留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2O-PVA/纳米纤维素复合材料的制备与吸附-光催化性能

王艳飞 靳泽远 李卓林 王鹤然 邢鹏宇 罗琳龙 胡英成

王艳飞, 靳泽远, 李卓林, 等. Cu2O-PVA/纳米纤维素复合材料的制备与吸附-光催化性能[J]. 复合材料学报, 2022, 39(0): 1-11
引用本文: 王艳飞, 靳泽远, 李卓林, 等. Cu2O-PVA/纳米纤维素复合材料的制备与吸附-光催化性能[J]. 复合材料学报, 2022, 39(0): 1-11
Yanfei WANG, Zeyuan JIN, Zhuolin LI, Heran WANG, Pengyu XING, Linlong LUO, Yingcheng HU. Preparation and adsorption-photocatalytic properties of Cu2O-PVA/nanocellulose composite[J]. Acta Materiae Compositae Sinica.
Citation: Yanfei WANG, Zeyuan JIN, Zhuolin LI, Heran WANG, Pengyu XING, Linlong LUO, Yingcheng HU. Preparation and adsorption-photocatalytic properties of Cu2O-PVA/nanocellulose composite[J]. Acta Materiae Compositae Sinica.

Cu2O-PVA/纳米纤维素复合材料的制备与吸附-光催化性能

基金项目: 国家自然科学基金项目(32171692);中央高校基本科研业务费专项资金项目(2572020DR13);东北林业大学院级大学生训练创新项目(CL06)
详细信息
    通讯作者:

    胡英成,博士,教授,博士生导师,研究方向为生物质复合材料性能评价 E-mail: yingchenghu@163.com

  • 中图分类号: TB332

Preparation and adsorption-photocatalytic properties of Cu2O-PVA/nanocellulose composite

  • 摘要: 为了改善氧化亚铜(Cu2O)的光催化性能,将Cu2O颗粒和聚乙烯醇(PVA)同时加入纳米纤维素(CNF)中,成功制备了具有三维(3D)多孔结构和丰富活性位点的功能化纤维素基气凝胶(Cu2O-PVA/CNF)。采用扫描电子显微镜、傅里叶变换红外光谱、X射线衍射仪、全自动比表面积、压缩测试对气凝胶样品进行了表征。以降解亚甲基蓝(MB)为模型污染物,评价了Cu2O-PVA/CNF复合催化剂的光催化性能,考察了6wt%Cu2O-PVA/CNF在不同初始浓度、不同催化剂用量以及不同溶液pH条件下对MB光降解效率的影响。结果表明,三维多孔的纤维素气凝胶的使用提高了对MB的吸附能力,延长了对可见光的吸收。特别是,在纤维素基体中掺杂的Cu2O在光照下激发出电子-空穴,增加了活性位点,从而提高了催化能力。6wt%Cu2O-PVA/CNF复合催化剂对MB的光降解率达到95.6%,远高于纯Cu2O的79.6%。Cu2O-PVA/CNF复合催化剂的光降解过程遵循表观准一级动力学模型。此外,与纯CNF气凝胶相比,PVA的加入使其压缩强度提高了4.4倍。该催化剂经5次光催化循环后再利用,对MB的可见光催化降解率仍能达到71.06%。这种Cu2O-PVA/CNF复合材料有利于用太阳辐射处理染料废水。

     

  • 图  1  Cu2O-PVA/CNF复合气凝胶的制备流程图

    Figure  1.  Flow chart of preparation of Cu2O-PVA/CNF composite aerogel

    PVA—Polyvinyl alcohol; CNF—Nanocellulose

    图  2  CNF、PVA/CNF和Cu2O-PVA/CNF气凝胶的微观形貌SEM图像

    Figure  2.  SEM images of CNF、PVA/CNF and Cu2O-PVA/CNF aerogel

    图  3  CNF、PVA、Cu2O-PVA和Cu2O-PVA/CNF的红外光谱

    Figure  3.  FTIR spectrum of CNF、PVA、Cu2O-PVA and Cu2O-PVA/CNF

    图  4  CNF、Cu2O和Cu2O-PVA/CNF的XRD图谱

    Figure  4.  XRD patterns of CNF 、Cu2O and Cu2O-PVA/CNF

    图  5  CNF和Cu2O-PVA/CNF的N2等温吸附曲线(a)和孔径分布图(b)

    Figure  5.  Nitrogen adsorption/desorption isotherms (a) and pore size distribution (b) of CNF and Cu2O-PVA/CNF

    图  6  CNF和Cu2O-PVA/CNF的压缩应力-应变曲线

    Figure  6.  Compression stress-strain curves of CNF and Cu2O-PVA/CNF

    图  7  CNF和Cu2O-PVA/CNF 的UV-vis DRS谱图

    Figure  7.  UV-vis DRS spectra of CNF and Cu2O-PVA/CNF

    图  8  纯Cu2O和Cu2O-PVA/CNF复合气凝胶的吸附-光催化效率对比(a)和一级动力学模型(b)

    Figure  8.  Comparison of adsorption-photocatalytic efficiency of pure Cu2O and Cu2O-PVA/CNF composite aerogels (a) and First order dynamics model (b)

    C—Instantaneous concentration of MB; C0—Initial concentration of MB

    图  9  6wt%Cu2O-PVA/CNF在不同初始浓度下对催化效率的影响(a)和一级动力学模型(b)

    Figure  9.  Effect of 6wt%Cu2O-PVA/CNF on catalytic efficiency at different initial concentrations (a) and First order dynamics model (b)

    图  10  6wt%Cu2O-PVA/CNF催化剂不同用量对催化效率的影响(a)和一级动力学模型(b)

    Figure  10.  Effect of different amount of 6wt%Cu2O-PVA/CNF catalyst on catalytic efficiency (a) and First order dynamics model (b)

    图  11  6wt%Cu2O-PVA/CNF在不同溶液pH下对光催化效率的影响(a)和一级动力学模型(b)

    Figure  11.  Effect of 6wt%Cu2O-PVA/CNF on photocatalytic efficiency at different solution pH (a) and First order dynamics model (b)

    图  12  (a)活性物质捕获剂对MB降解率的影响; 6wt%Cu2O-PVA/CNF (DMPO作为自由基捕获剂)的ESR光谱:在可见光照射下检测DMPO-·O2− (b)和检测DMPO-·OH (c)

    Figure  12.  (a) Effect of active substance capture agent on MB degradation rate; ESR spectra of 6wt%Cu2O-PVA/CNF (DMPO as radical trapper): detecting DMPO-·O2− (b) and detecting DMPO-·OH (c) under visible light irradiation

    图  13  6wt%Cu2O-PVA/CNF重复使用次数对MB降解率的影响(a)和6wt%Cu2O-PVA/CNF光催化剂使用前后的XRD图谱(b)

    Figure  13.  Effect of repeated use of 6wt%Cu2O-PVA/CNF on MB degradation rate (a) and XRD patterns of 6wt%Cu2O-PVA/CNF before and after use (b)

    表  1  CNF和Cu2O-PVA/CNF的比表面积和孔径结构参数

    Table  1.   The surface area, pore volume and average pore size of CNF and Cu2O-PVA/CNF

    SamplesSpecific surface area/(m2·g−1)Pore size/nmTotal pore volume /
    (cm3·g−1)
    CNF4.002.520.00250
    2wt%Cu2O-PVA/CNF14.06.230.0220
    4wt%Cu2O-PVA/CNF10.45.890.0150
    6wt%Cu2O-PVA/CNF6.915.440.00940
    8wt%Cu2O-PVA/CNF2.674.330.00380
    下载: 导出CSV

    表  2  Cu2O 和 Cu2O-PVA/CNF的去除率、速率常数和r2

    Table  2.   Removal rate, rate constant and r2 of Cu2O and Cu2O-PVA/CNF

    SamplesAdsorption removal
    rate/%
    Catalytic removal
    rate/%
    Total removal
    rate/%
    Κ/min−1r2
    Cu2O10.169.579.60.01850.996
    2wt%Cu2O-PVA/CNF40.850.791.50.02430.983
    4wt%Cu2O-PVA/CNF45.047.092.00.02410.986
    6wt%Cu2O-PVA/CNF46.948.795.60.03110.991
    8wt%Cu2O-PVA/CNF40.742.483.20.02230.991
    Notes: K—Catalytic efficiency; r2—Correlation coefficient after fitting.
    下载: 导出CSV

    表  3  不同溶液pH值对亚甲基蓝脱色动力学模型的数据

    Table  3.   The data of the kinetic model of the decolonization of methylene blue by the pH of different solutions

    pHK(Rate constant)mg/(L·min)r2
    30.003470.993
    50.02350.984
    70.02860.988
    90.02880.985
    110.03760.962
    下载: 导出CSV
  • [1] ZULFIQAR M, SUFIAN S, BAHADAR A, et al. Surface-fluorination of TiO2 photocatalysts for remediation of water pollution: A review[J]. Journal of Cleaner Production,2021,317:128354. doi: 10.1016/j.jclepro.2021.128354
    [2] ZHANG H and FANG Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures[J]. Journal of Alloys and Compounds,2019,781:201-208. doi: 10.1016/j.jallcom.2018.11.375
    [3] 李佳欣, 高铭, 谭淋, 等. 静电纺丝纳米纤维膜材料吸附处理废水中污染物的研究进展[J]. 复合材料学报, 2021, 39(0): 1-19.

    LI J X, GAO M, TAN L, et al. Adsorption treatment of wastewater by electrospun nanofiber membranes: A review[J]. Acta Materiae Compositae Sinica 2021, 39(0): 1-19 (in Chinese).
    [4] YAGUB M T, SEN T K, AFROZE S, ANG H M. Dye and its removal from aqueous solution by adsorption: a review[J]. Advances in colloid and interface science,2014,209:172-184. doi: 10.1016/j.cis.2014.04.002
    [5] SELINA H, MAJID E, KOLBRUN F H, et al. Direct membrane filtration for wastewater treatment and resource recovery: A review[J]. Science of the Total Environment,2020,710:136375. doi: 10.1016/j.scitotenv.2019.136375
    [6] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2021, 0(0):1-10.

    SHEN J Y, LIU B W, ZHAO Y X, et al. Preparation of CuS-Bi2WO6/activated carbon nanofiber and its photocatalytic performance[J]. Acta Materiae Compositae Sinica,2021,0(0):1-10(in Chinese).
    [7] THORBEN M, DENNIS H, MICHAEL S, ULRICH K. Electrochemical reactors for wastewater treatment[J]. ChemBioEng Reviews,2019,6(5):142-156. doi: 10.1002/cben.201900021
    [8] CHEE Y T, PRETTY M B, KATRINA P YEE S, WU T Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment[J]. ACS Publications,2016,55(16):4363-4389.
    [9] 李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12):4273-4281.

    LI T T, LI R X, MA Z, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica,2021,38(12):4273-4281(in Chinese).
    [10] PAOLA F, STEFANO C, ANTONIO T, IOLANDA D M. Porous aerogels and adsorption of pollutants from water and air: A review[J]. Molecules,2021,26(15):4440. doi: 10.3390/molecules26154440
    [11] HAJAR M. Recent advances in aerogels for environmental remediation applications: A review[J]. Chemical Engineering Journal,2016,300:98-118. doi: 10.1016/j.cej.2016.04.098
    [12] 林兆云, 戢德贤, 杨桂花, 等. 纤维素基金属纳米粒子复合催化剂的制备与应用[J]. 复合材料学报, 2022, 39(3):989-1000.

    LIN Z Y, JI D X, YANG G H, et al. Preparation and application of cellulose-based metal nanoparticles composite catalysts[J]. Acta Materiae Compositae Sinica,2022,39(3):989-1000(in Chinese).
    [13] 邹静, 王正良, 佘跃惠. 生物纳米复合材料的合成及其在污水处理中的应用[J]. 复合材料学报, 2021, 0(0): 1-13.

    ZOU J, WANG Z L, SHE Y H. Synthesis of bio-nano composite and its application in wastewater treatment[J]. Acta Materiae Compositae Sinica (in Chinese).
    [14] AZIMA A, KAM S L, SIEW X C, et al. Zinc oxide-filled polyvinyl alcohol–cellulose nanofibril aerogel nanocomposites for catalytic decomposition of an organic dye in aqueous solution[J]. Cellulose,2021,28:2241-2253. doi: 10.1007/s10570-021-03695-z
    [15] SHEN D Z, LIU J, GAN L H, et al. Green synthesis of Fe3O4 /cellulose/polyvinyl alcohol hybride aerogel and its application for dye removal[J]. Journal of Polymers and the Environment,2018,26:2234-2242. doi: 10.1007/s10924-017-1116-0
    [16] 吴树颖, 冯郁成, 张霄等. 氧化亚铜-纤维素复合材料的制备与应用进展[J]. 中国造纸, 2021, 40(9):81-92.

    WU S Y, FENG Y C, ZHANG X, et al. Progress in the preparation and application of cuprous oxide-cellulose composites[J]. China Pulp & Paper,2021,40(9):81-92(in Chinese).
    [17] 李卓豪, 陈秀婷, 李俊航等. Cu2O掺杂TiO2光催化降解亚甲基蓝的研究[J]. 应用化工, 2020, 49(12):3039-3042. doi: 10.3969/j.issn.1671-3206.2020.12.018

    LI Z H, CHEN X T, LIAO L X, et al. Study on photocatalytic degradation of methylene blue by Cu2O doped TiO2[J]. Applied Chemical Industry,2020,49(12):3039-3042(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.12.018
    [18] 龙丹, 周俊伶, 时洪民等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6):2756-2767.

    LONG D, ZHOU J L, SHI H M, et al. Advances in research on performance enhancement and enhancement mechanism of cuprous oxide photocatalyst[J]. Chemical Industry and Engineering Progress,2019,38(6):2756-2767(in Chinese).
    [19] SUBHEDAR A, BHADAURIA S, AHANKARI S, KARGARZADEH H. Nanocellulose in biomedical and biosensing applications: A review[J]. International Journal of Biological Macromolecules,2021,166:587-600. doi: 10.1016/j.ijbiomac.2020.10.217
    [20] VALERIA N, JONATHAN P. W, JAMES, et al. Tailoring gelation mechanisms for advanced hydrogel applications [J]. Advanced Functional Materials, 2020, 30 (42).
    [21] RASHMI S H, RAIZADA A, MADHU G M, et al. Influence of zinc oxide nanoparticles on structural and electrical properties of polyvinyl alcohol films[J]. Plastics, Rubber and Composites,2015,44(1):33-39. doi: 10.1179/1743289814Y.0000000115
    [22] SELVI J, MAHALAKSHMI S, PARTHASARATHY V, et al. Optical, thermal, mechanical properties, and non-isothermal degradation kinetic studies on PVA/CuO nanocomposites[J]. Polymer Composites,2019,40(9):3737-3748. doi: 10.1002/pc.25235
    [23] FAN J J, SHINDUKE I, WANG M Z, et al. Robust nanofibrillated cellulose hydro/aerogels from benign solution/solvent exchange treatment[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):6624-6634.
    [24] TSUGUYUKI S, SATOSHI K, YOSHIHARU N, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. doi: 10.1021/bm0703970
    [25] YANG H M, OUYANG J, TANG A D, et al. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles[J]. Materials Research Bulletin,2006,41(7):1310-1318. doi: 10.1016/j.materresbull.2006.01.004
    [26] WU J, CARSON M J. Assembly of Chitin Nanofibers into Porous Biomimetic Structures via Freeze Drying[J]. ACS Macro Letters,2014,3(2):185-190. doi: 10.1021/mz400543f
    [27] SATHISH M B, KELOTH B. Fabrication of multifunctional TANI/Cu2O/Ag nanocomposite for environmental abatement[J]. Scientific Reports,2020,10:1-16. doi: 10.1038/s41598-019-56847-4
    [28] CHAN C H, CHIN H C, SARANI Z, et al. Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue[J]. RSC Advances,2015,5(24):18204-18212. doi: 10.1039/C4RA15754K
  • 加载中
计量
  • 文章访问数:  202
  • HTML全文浏览量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 录用日期:  2022-01-07
  • 修回日期:  2022-01-05
  • 网络出版日期:  2022-02-12

目录

    /

    返回文章
    返回