留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SiO2/芳纶纳米纤维“葡萄”结构的耐磨超疏水涂层的制备与性能

张炜亮 邓莉 张田田 黄亚文 王树民 胡程耀 陈俊

张炜亮, 邓莉, 张田田, 等. 基于SiO2/芳纶纳米纤维“葡萄”结构的耐磨超疏水涂层的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 张炜亮, 邓莉, 张田田, 等. 基于SiO2/芳纶纳米纤维“葡萄”结构的耐磨超疏水涂层的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHANG Weiliang, DENG Li, ZHANG Tiantian, et al. Preparation and properties of wear-resistant superhydrophobic coatings based on SiO2/ aramid nanofibers 'grape' structure[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Weiliang, DENG Li, ZHANG Tiantian, et al. Preparation and properties of wear-resistant superhydrophobic coatings based on SiO2/ aramid nanofibers "grape" structure[J]. Acta Materiae Compositae Sinica.

基于SiO2/芳纶纳米纤维“葡萄”结构的耐磨超疏水涂层的制备与性能

基金项目: 基于全涂料体系有机硅氟改性技术的水性氧化石墨烯超防腐涂料产业化(2022ZYDF032);主被动协同防腐片状纳米阻隔剂研究及防腐涂料产业化(2022YFG0106)
详细信息
    通讯作者:

    胡程耀,博士,讲师,硕士生导师,研究方向为超疏水 E-mail:huchengyao7890@126.com

    陈俊,硕士,研究方向为防腐涂层 E-mail:740677250@qq.com

  • 中图分类号: TB332

Preparation and properties of wear-resistant superhydrophobic coatings based on SiO2/ aramid nanofibers "grape" structure

Funds: Industrialization of water-based graphene oxide super anticorrosive coating based on the whole coating system organosilicon fluorine modification technology (2022ZYDF032); Study on Active and Passive Synergistic Anti-corrosion sheet Nano Barrier and Industrialization of Anti-corrosion Coatings (2022YFG0106)
  • 摘要: 超疏水材料由于其超高的防水性在工业防腐等领域展现出巨大的应用前景,然而在实际使用过程中,涂层表面的微纳结构和低表面能物质会被不断损耗从而影响超疏水性能。本文主要以聚多巴胺(PDA)包裹的芳纶纳米纤维(ANFs)作为一种微纳米构筑单元,在其上通过溶胶凝胶法原位生长纳米SiO2,并通过对其进行低表面能改性构建“葡萄”形超疏水结构,最后通过“粘接剂-超疏水粒子”喷涂得到超疏水涂层。当正硅酸乙酯(TEOS)添加量为2.1wt%时,超疏水涂层的接触角(WCA)为158°±1.5°。所制得的涂层具有良好的力学性能,在分别经过200 g砝码在25 μm砂纸下的240次磨损和400 g砂冲实验,仍能保持良好的超疏水性能。通过Nyquist测试表明样片阻抗弧明显变大、Tafel测试表明腐蚀电位正移,喷涂超疏水涂层后能够有效提升防腐性能。

     

  • 图  1  “葡萄”形SiO2/ANFs-PDA(SAP)超疏水粒子制备流程图

    Figure  1.  "Grape-like" SiO2/ANFs-PDA(SAP) superhydrophobic particle preparation process diagram

    ANFs—Aramid nanofibers; PDA—Polydopamine; TEOS—Ethyl orthosilicate

    图  2  SAP中不同TEOS的添加量的接触角(WCA)和滚动角(SCA)

    Figure  2.  Water contact angle (WCA) and slide contact angle (SCA) of SAP with different addition amounts of TEOS

    图  3  (a-b) ANF的TEM图;(c-d) ANFs-PDA的SEM图; (e-f) TEOS含量为2.1%SAP的SEM图

    Figure  3.  (a-b) TEM images of ANF; (c-d) SEM images of ANFs-PDA; (e-f) SEM images of SAP with a TEOS content of 2.1%

    图  4  (a) ANFs的FTIR全反射谱图; (b) ANFs-PDA和SAP的FTIR谱图

    Figure  4.  (a) Total reflection FTIR spectra of ANFs; (b) FTIR of ANFs-PDA and SAP

    图  5  (a) ANFs的XPS C1s谱图; (b) ANFs-PDA的XPS C1s谱图; (c) SAP的XPS C1s谱图

    Figure  5.  (a) XPS C1s spectrum of ANFs; (b) XPS C1s spectrum of ANFs-PDA; (c) XPS C1s spectrum of SAP

    图  6  水、茶、牛奶、空压油、菜籽油、正十六烷在涂层上静置10 min后的图像

    Figure  6.  Images of water, tea, milk, air-compressor-oils, Rapeseed oil and hexadecane he-xadecane on the coating for 10 minutes

    图  7  预固化时间分别为15 min(a)、20 min(b)、25 min(c)的SAP涂层横截面的SEM图像

    Figure  7.  SEM images of the cross section of SAP coatings with pre-curing times of 15 min(a), 20 min(b), and 25 min(c)

    图  8  不同底层预固化时间的超疏水涂层表面的元素分布图: (a)预固化时间为20 min; (b)预固化时间为24 min

    Figure  8.  Element distribution maps on the surface of superhydrophobic coatings with different pre-curing times at the bottom layer (a): the pre curing time is 20 minutes; (b) the pre curing time is 24 minutes

    图  9  (a) SAP涂层在200 g砝码25 μm砂纸磨损下的WCA和SCA; (b) ASF涂层在200 g砝码25 μm砂纸磨损下的WCA和SCA; (c)落砂实验示意图;(d)SAP涂层随落砂磨损下的WCA和SCA

    Figure  9.  (a) SAP’s WCA and SCA of the coating under the wear of 200 g weight and 25 μm sandpaper; (b) ASP’s WCA and SCA of the coating under the wear of 200 g weight and 25 μm sandpaper; (c) Schematic diagram of sand impinging test; (d) SAP’s WCA and SCA of coating under sand impinging

    图  10  (a-c) SAP涂层的SEM图像; (d-f) SAP涂层的摩擦200次后的SEM图像

    Figure  10.  (a-c) SEM images of SAP coatings; (d-f) SEM images of SAP coatings after 200 abrasion times

    图  11  磨损前后的原理图: (a) SiO2/ANFs-PDA涂层; (b) SiO2涂层

    Figure  11.  Schematic diagram of coating surface before and after abrasion: (a) Coating of SiO2/ANFs-PDA; (b) Coating of SiO2

    图  12  SAP涂层在温差循环测试中的接触角

    Figure  12.  Contact angle of SAP coating in temperature difference test cycles

    图  13  (a) SAP涂层在不同pH去离子下浸泡后的疏水角; (b) SAP涂层在去离子水中浸泡时出现的银镜效应

    Figure  13.  (a)Water contact angle of SAP coating after immersion at different pH deionized water; (b)Silver mirror effect of SAP coating during immersion in deionized water

    图  14  SAP超疏水涂层的自清洁测试: (a)载玻片; (b) SAP涂层

    Figure  14.  Self-cleaning test of SAP superhydrophobic coating:(a) Glass slide; (b) SAP coating

    图  15  电化学测试结果: (a)SAP 涂层的Nyquist 图; (b)原始铝片的Nyquist 图; (c)Tafel极化曲线

    Figure  15.  Electrochemical test results: (a)Nyquist diagram of SAP coating; (b)Nyquist diagram of aluminum sheet; (c)Tafel polarization curve

    表  1  底层不同预固化时间对涂层疏水性能的影响

    Table  1.   The effect of different hardening times of the first layer on the hydrophobic properties of coatings

    Hardening time/min 20 22 24 26 28 30
    WCA/(º) 144 147 158 158 × ×
    SCA/(º) 27 18 5 5 × ×
    Notes: When the pre-curing time is greater than 26 minutes, the mechanical performance of the coating is poor, and the testing data becomes meaningless.
    下载: 导出CSV

    表  2  涂层附着力测试

    Table  2.   Coating adhesion test

    Adhesion tesr times0147
    Sample
    WCA157°157°156°153°
    下载: 导出CSV
  • [1] ZHANG L, ZHOU A G, SUN B R, et al. Functional and versatile superhydrophobic coatings via stoichiometric silanization[J]. Nature communications, 2021, 12(1): 982. doi: 10.1038/s41467-021-21219-y
    [2] JELIA P R, AGRAWAL A, SINGH R K, et al. Design of textured surfaces for super-hydrophobicity[J]. Sādhanā, 2017, 42: 1915-1927.
    [3] WANG Z, MA H, CHU B, et al. Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption[J]. Polymer, 2017, 126: 470-476. doi: 10.1016/j.polymer.2017.05.068
    [4] ZHENG J, QU G, YANG B, et al. Facile pr-eparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function[J]. Applied Surf-ace Science, 2022, 576: 151875. doi: 10.1016/j.apsusc.2021.151875
    [5] LATTHE S S, SUTAR R S, KODAG V S, et al. Self–cleaning superhydrophobic coatings: Potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. doi: 10.1016/j.porgcoat.2018.12.008
    [6] ENGLAND M W, SATO T, URATA C, et al. Transparent gel composite films with multiple functionalities: Long-lasting anti-fogging, underwater superoleophobicity and anti-bacterial activity[J]. Journal of colloid and interface science, 2017, 505: 566-576. doi: 10.1016/j.jcis.2017.06.038
    [7] GU W, SONG K, CHENG Z, et al. Water-Based Robust Transparent Superamphiphobic Coatings for Resistance to Condensation, Frosting, Icing, and Fouling[J]. Advanced Materials Interfaces, 2020, 7(10): 1902201. doi: 10.1002/admi.201902201
    [8] ZENG D, LI Y, HUAN D, et al. Robust epoxy-modified superhydrophobic coating for aircraft anti-icing systems[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127377. doi: 10.1016/j.colsurfa.2021.127377
    [9] CHEN R, ZHANG Y, XIE Q, et al. Transparent polymer-ceramic hybrid antifouling coating with superior mechanical properties[J]. Advanced Functional Materials, 2021, 31(19): 2011145. doi: 10.1002/adfm.202011145
    [10] HWANG G B, PATIR A, PAGE K, et al. Buoyancy increase and drag-reduction through a simple superhydrophobic coating[J]. Nanoscale, 2017, 9(22): 7588-7594. doi: 10.1039/C7NR00950J
    [11] WANG N, WANG Y, SHANG B, et al. Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation[J]. Journal of colloid and interface science, 2018, 531: 300-310. doi: 10.1016/j.jcis.2018.07.056
    [12] WANG S, YU X, ZHANG Y. Large-scale fabrication of translucent, stretchable and durable superhydrophobic composite films[J]. Journal of Materials Chemistry A, 2017, 5(45): 23489-23496. doi: 10.1039/C7TA08203G
    [13] YE H, ZHU L, LI W, et al. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications[J]. Journal of Materials Chemistry A, 2017, 5(20): 9882-9890. doi: 10.1039/C7TA02118F
    [14] GU W, LI W, ZHANG Y, et al. Ultra-durable superhydrophobic cellular coatings[J]. Nature Communications, 2023, 14(1): 5953. doi: 10.1038/s41467-023-41675-y
    [15] LU Y, SATHASIVAM S, SONG J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132-1135. doi: 10.1126/science.aaa0946
    [16] CHEN F, WANG Y, TIAN Y, et al. Robust and durable liquid-repellent surfaces[J]. Chemical Society Reviews, 2022.
    [17] WANG P, LI C, ZHANG D. Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening[J]. Journal of Materials Science & Technology, 2022, 129: 40-69.
    [18] ZHANG X, WANG H, LIU Z, et al. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles[J]. Applied Surface Science, 2017, 396: 1580-1588. doi: 10.1016/j.apsusc.2016.11.217
    [19] NINE M J, COLE M A, JOHNSON L, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS applied materials & interfaces, 2015, 7(51): 28482-28493.
    [20] XIAO Z, WANG Q, YAO D, et al. Enhancing the robustness of superhydrophobic coatings via the addition of sulfide[J]. Langmuir, 2019, 35(20): 6650-6656. doi: 10.1021/acs.langmuir.9b00690
    [21] ZHAO Y, LI X, SHEN J, et al. The potential of Kevlar aramid nanofiber composite membranes[J]. Journal of materials chemistry A, 2020, 8(16): 7548-7568. doi: 10.1039/D0TA01654C
    [22] 张美云, 罗晶晶, 杨斌, 等. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166. doi: 10.11896/cldb.18120041

    ZHANG MEIYUN, LUO JINGJING, YANG BIN, et al. Research progress of preparation and application of aramid nanofibers[J]. Materials Reports, 2020, 34(5): 5158-5166(in Chinese). doi: 10.11896/cldb.18120041
    [23] Yang B, Wang L, Zhang M, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020, 30(22): 2000186. doi: 10.1002/adfm.202000186
    [24] LI Y, CAO Y. The molecular mechanisms underlying mussel adhesion[J]. Nanoscale Advances, 2019, 1(11): 4246-4257. doi: 10.1039/C9NA00582J
    [25] TRAN N T, FLANAGAN D P, ORLICKI J A, et al. Polydopamine and polydopamine–silane hybridsurface treatments in structural adhesive applications[J]. Langmuir, 2018, 34(4): 1274-1286. doi: 10.1021/acs.langmuir.7b03178
    [26] ZHANG X, LIU Z, ZHANG X, et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface[J]. Chemical Engineering Journal, 2018, 343: 699-707. doi: 10.1016/j.cej.2018.03.012
    [27] WANG N, WANG Y, SHANG B, et al. Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation[J]. Journal of colloid and interface science, 2018, 531: 300-310. doi: 10.1016/j.jcis.2018.07.056
    [28] ZHANG T, DENG J, ZHANG L Z. A photothermal self-healing superhydrophobic coating with anti-frosting and anti-corrosion properties[J]. Progress in Organic Coatings, 2023, 180: 107569. doi: 10.1016/j.porgcoat.2023.107569
    [29] WU B, LYU J, PENG C, et al. Inverse infuse-on processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineeri-ng Journal, 2020, 387: 124066. doi: 10.1016/j.cej.2020.124066
    [30] 中国国家标准化管理委员会(标准制定单位). 水泥胶砂强度检验方法(ISO法): GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Test method of cement mortar strength(ISO method): GB/T 17671-2021[S]. Beijing: China Standards Press, 2005(in Chinese).
    [31] 中国国家标准化管理委员会(标准制定单位). 色漆和清漆的划格试验: GB/T 9286-1998[S]. 北京: 中国标准出版社, 1988.

    Standardization Administration of the People’s Republic of China. Paints and varnishes-cross cut test for films: GB/T 9286-1998[S]. Beijing: China Standards Press, 1988(in Chinese).
    [32] 朱航, 刘静, 雷西萍, 等. 十四酸改性SiO2/超支化PDMS自修复涂层的制备及其超疏水性能[J]. 复合材料学报, 2024, 41(1): 270-282.

    ZHU HANG, LIU JING, LEI XI PING, et al, Preparation of myristic acid modified SiO2/hyperbranched-PDMS self-healing coating and its superhydrophobic performance [J], Acta Materiae Composita Sinica, 2024, 41(1): 270-282. (in Chinese).
  • 加载中
计量
  • 文章访问数:  72
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-02-28
  • 录用日期:  2024-03-09
  • 网络出版日期:  2024-04-16

目录

    /

    返回文章
    返回