Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites
-
摘要:
碳纤维增强树脂基复合材料(CFRP)由于比强度高、比模量高等优异性能应用广泛。但受层状结构特性和环氧树脂本征脆性的影响,其沿厚度方面的力学性能较差,在遭受面外冲击和面内压缩等载荷作用下容易发生分层,进而降低复合材料的强度和刚度,影响结构的寿命和使用安全性。因此,提高该复合材料的层间断裂韧性尤为重要。本文通过在复合材料层间区域插层高度取向的碳纳米管纤维纱来提升其层间断裂韧性。相比于其它插层材料,该纤维纱的厚度更薄(约5微米厚)且力学性能更好,对复合材料的厚度、重量及面内力学性能影响相对较小。然而,由于该纤维纱的致密度较高,其树脂浸润问题一直是层间增韧应用的技术难点和关键。本文尝试先将纤维纱浸泡于经丙酮稀释的环氧树脂溶液中,待丙酮挥发后,再将之插层于自制碳纤维预浸料的层间区域,然后热压成型。结果表明,该方法有效地解决了碳纳米管纤维纱的树脂浸润问题。经纳米纤维纱增韧后,复合材料板的I型和II型层间断裂韧性分别提高了37.4%和41.8%。此外,本文结合横截面的光学显微观察和断裂面的扫描电镜分析,再现了裂纹的扩展路径,并进一步揭示了碳纳米管纤维纱的层间增韧机制。 不同裂纹位置的金相抛光图片及其对应开裂面的扫描电镜图片 -
关键词:
- 碳纳米管纤维纱 /
- 层间增韧 /
- 纤维桥接 /
- 裂纹偏转 /
- 碳纤维增强树脂基复合材料
Abstract: Carbon fiber reinforced polymer (CFRP) composites are widely used because of their excellent properties such as high specific strength and high specific modulus, but their mechanical properties along the thickness are poor due to the laminar structure characteristics and the intrinsic brittleness of epoxy resin, and they are prone to delamination under out-of-plane impact and in-plane compression loads, which in turn reduce the strength of the composites. Therefore it is especially important to improve the interlaminar fracture toughness of the composites. In this paper, we attempt to improve the interlaminar fracture toughness of the composite by introducing highly oriented carbon nanotube fiber veils in the interlaminar region. To ensure that the fiber veils are well infiltrated by the resin, they are first immersed in an epoxy resin solution diluted with acetone. After the acetone evaporated, it is inserted into the interlayer region of the homemade carbon fiber prepreg and subsequently cured by a hot pressing process. The Mode I and Mode II interlaminar fracture toughness of the toughened samples are evaluated via ASTM testing standards. Combined with the optical microscopic observation of the cross-section and scanning electron microscopy analysis of the fracture surface, the crack propagation paths are clearly shown and the interlaminar toughening mechanisms of CNT fiber veils are revealed. The results show that the Mode I and Mode II interlaminar fracture toughness of CNT veil toughened samples are improved by 37.4% and 41.8%, respectively. The toughening mechanisms mainly include matrix toughening, strengthening carbon fiber bridging and crack deflection.-
Key words:
- Carbon nanotube veil /
- Interlaminar toughening /
- Fiber bridging /
- Crack deflection /
- CFRP
-
图 3 取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料Ⅰ型断裂韧性测试结果:(a)样品的载荷-裂纹张开位移图;(b)Ⅰ型断裂韧性测试的R曲线;(c)Ⅰ型断裂韧性平均值
Figure 3. Mode Ⅰ fracture toughness test results of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites: (a) Load-crack opening displacement diagram of the sample; (b) R curve of mode Ⅰ fracture toughness test; (c) Mean value of mode Ⅰ fracture toughness
表 1 CNT veil参数
Table 1. Parameters of CNT veil
Parameter Thickness
/μmDensity of surface/(g·m−2) Diameter of CNT/nm Value 5±0.5 2.59-3.70 6-15 表 2 不同区域的断裂韧性对比
Table 2. Comparison of fracture toughness at different regions
Crack length
/mmGⅠC /(J·m−2) Baseline CNT veil 50-75 730 ± 90 1137 ± 43(+55.8%) 75-100 869 ± 67 1092 ± 62 (+25.7%) 50-100 810 ± 76 1112 ± 50 (+37.4%) -
[1] MUGAHED AMRAN Y H, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: A review[J]. Structures,2018,16:208-238. doi: 10.1016/j.istruc.2018.09.008 [2] BOON Y D, JOSHI S C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites[J]. Materials Today Communications,2020,22:100830. doi: 10.1016/j.mtcomm.2019.100830 [3] LU W, ZU M, BYUN J-H, et al. State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges [J] Advanced Materials, 2012, 24(14) : 1805-1833. [4] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0 [5] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381(6584):678-680. doi: 10.1038/381678a0 [6] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes [J]. 1997, 277(5334) : 1971-1975. [7] OUYANG Q, WANG X, LIU L. High crack self-healing efficiency and enhanced free-edge delamination resistance of carbon fibrous composites with hierarchical interleaves[J]. Composites Science and Technology,2022,217:109115. doi: 10.1016/j.compscitech.2021.109115 [8] GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon,2009,47(12):2914-2923. doi: 10.1016/j.carbon.2009.06.039 [9] WARRIER A, GODARA A, ROCHEZ O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix[J]. Composites Part A:Applied Science and Manufacturing,2010,41(4):532-538. doi: 10.1016/j.compositesa.2010.01.001 [10] KIM M, RHEE K, LEE J, et al. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Composites Part B:Engineering,2011,42(5):1257-1261. doi: 10.1016/j.compositesb.2011.02.005 [11] DE VOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: present and future commercial applications[J]. science,2013,339(6119):535-539. doi: 10.1126/science.1222453 [12] ALMUHAMMADI K, ALFANO M, YANG Y, et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials & Design,2014,53:921-927. [13] WICKS S S, WANG W, WILLIAMS M R, et al. Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes[J]. Composites Science and Technology,2014,100:128-135. doi: 10.1016/j.compscitech.2014.06.003 [14] BOROWSKI E, SOLIMAN E, KANDIL U F, et al. Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes[J]. Polymers,2015,7(6):1020-1045. doi: 10.3390/polym7061020 [15] GOJNY F H, WICHMANN M H, FIEDLER B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study[J]. Composites Science and Technology,2005,65(15):2300-2313. [16] VILATELA J J, KHARE R, WINDLE A H. The hierarchical structure and properties of multifunctional carbon nanotube fibre composites[J]. Carbon,2012,50(3):1227-1234. doi: 10.1016/j.carbon.2011.10.040 [17] OU Y, GONZáLEZ C, VILATELA J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A:Applied Science and Manufacturing,2019:124. [18] NGUYEN F, TUN S, HARO A, et al. Interlaminar reinforcement by aligned carbon nanotubes in carbon fiber reinforced polymer composites; proceedings of the 19 th International Conference on Composite Materials (ICCM), F]. [19] NISTAL A, FALZON B G, HAWKINS S C, et al. Enhancing the fracture toughness of hierarchical composites through amino‒functionalised carbon nanotube webs[J]. Composites Part B:Engineering,2019,165:537-544. doi: 10.1016/j.compositesb.2019.02.001 [20] DI LEONARDO S, NISTAL A, CATALANOTTI G, et al. Mode I interlaminar fracture toughness of thin-ply laminates with CNT webs at the crack interface[J]. Composite Structures,2019,225:111178. doi: 10.1016/j.compstruct.2019.111178 [21] 李强, 殷新意, 于妍妍, 等. 取向碳纳米管/环氧树脂复合薄膜制备及结构/性能表征[J]. 复合材料学报, 2021, 38(9):2767-2775.LI Qiang, YIN Yixin, YU Yanyan, et al. Preparation and characterization of aligned carbon nanotubes/epoxy composite films[J]. Acta Materiae Compositae Sinica,2021,38(9):2767-2775(in Chinese). [22] American Society for Testing and Materials. Standard Test Method for Mode I Interlaminar Fracture Toughness of UnidirectionalFiber-Reinforced Polymer Matrix Composites: ASTM D5528-01[S]. Pennsylvania, ASTM International 2007. [23] American Society for Testing and Materials. Standard Test Method forDetermination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced PolymerMatrix Composites: ASTM D7905 [S]. Pennsylvania, ASTM International, 2014. [24] 张远, 于妍妍, 何静宇, 等. 碳纳米管薄膜增强复合材料 Ⅰ 型断裂韧性研究[J]. 炭素技术, 2018, 37(4):7-32.ZHANG Yuan, YU Yanyan, HE Jingyu, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Acta Materiae Compositae Sinica,2018,37(4):7-32(in Chinese). [25] HERRáEZ M, PICHLER N, BOTSIS J. Improving delamination resistance through tailored defects[J]. Composite Structures,2020:247. [26] KHAN R. Fiber bridging in composite laminates: A literature review[J]. Composite Structures,2019,229:111418. doi: 10.1016/j.compstruct.2019.111418 [27] BASOGLU M F, ZERIN Z, KEFAL A, et al. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks[J]. Computational Materials Science,2019,162:33-46. doi: 10.1016/j.commatsci.2019.02.032 [28] SHIN Y-C, KIM S-M. Enhancement of the Interlaminar Fracture Toughness of a Carbon-Fiber-Reinforced Polymer Using Interleaved Carbon Nanotube Buckypaper [J]. 2021, 11(15) : 6821. -

计量
- 文章访问数: 202
- HTML全文浏览量: 85
- 被引次数: 0