留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制

吴龙强 欧云福 茅东升 祝令状 刘立起 李赫

吴龙强, 欧云福, 茅东升, 等. 取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制[J]. 复合材料学报, 2023, 40(10): 5611-5620. doi: 10.13801/j.cnki.fhclxb.20221228.002
引用本文: 吴龙强, 欧云福, 茅东升, 等. 取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制[J]. 复合材料学报, 2023, 40(10): 5611-5620. doi: 10.13801/j.cnki.fhclxb.20221228.002
WU Longqiang, OU Yunfu, MAO Dongsheng, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620. doi: 10.13801/j.cnki.fhclxb.20221228.002
Citation: WU Longqiang, OU Yunfu, MAO Dongsheng, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620. doi: 10.13801/j.cnki.fhclxb.20221228.002

取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制

doi: 10.13801/j.cnki.fhclxb.20221228.002
基金项目: 宁波市自然科学基金(2021J208);中国博士后科学基金(2022M713241);中科院“百人计划”(2021R01005);宁波市“甬江引才工程”(2021A-045-C)
详细信息
    通讯作者:

    欧云福,博士,助理研究员,研究方向为增强与增韧 E-mail: ouyunfu@nimte.ac.cn

    李赫,博士,研究员,研究方向为表面科学 E-mail: lihe@nimte.ac.cn

  • 中图分类号: TB332

Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites

Funds: Natural Science Foundation of Ningbo (2021J208); Fellowship of China Postdoctoral Science Foundation (2022M713241); "One Hundred Talented People" of the Chinese Academy of Sciences (2021R01005); Ningbo Yongjiang Talent Introduction Programme (2021A-045-C)
  • 摘要: 碳纤维增强树脂基复合材料(CFRP)由于比强度高、比模量高等优异性能应用广泛,但受层状结构特性和环氧树脂本征脆性影响,其沿厚度方面的力学性能较差,在遭受面外冲击和面内压缩载荷下容易发生分层,进而降低复合材料强度,因此提高该复合材料的层间断裂韧性尤为重要。本文通过在复合材料层间区域引入高度取向的碳纳米管(CNT)纤维纱来提升其层间断裂韧性。为确保纤维纱被树脂充分浸润,首先将其浸泡于经丙酮稀释的环氧树脂溶液中,待丙酮挥发后,将之插层于自制碳纤维预浸料的层间区域,随后借助热压工艺固化成型。通过ASTM标准对增韧样品的I型和II型层间断裂韧性进行了评估,并结合横截面的光学显微观察和断裂面的扫描电镜分析,清晰地显示了裂纹的扩展路径,并揭示了CNT纤维纱的层间增韧机制。结果表明:CNT纤维纱增韧样品的I型和II型层间断裂韧性分别提高37.4%和41.8%。其增韧机制主要包括增韧树脂、加强碳纤维桥接及引发裂纹偏转等。

     

  • 图  1  碳纳米管(CNT)纤维纱

    Figure  1.  Carbon nanotube (CNT) fiber veil

    图  2  预浸料及样品制备流程图

    Figure  2.  Flow chart of prepreg and sample preparation

    图  3  取向CNT纤维纱插层碳纤维/环氧树脂复合材料I型断裂测试结果:(a) 样品的载荷-裂纹张开位移图;(b) I型断裂测试的R曲线;(c) I型断裂韧性GIC平均值

    Figure  3.  Mode I fracture test results of aligned CNT fiber veil interleaved carbon fiber/epoxy composites: (a) Load-crack opening displacement diagram of the sample; (b) R curves of mode I fracture test; (c) Mean value of mode I fracture toughness GIC

    图  4  (a) 基准样的I型断裂面;((b), (c)) 断裂表面在不同倍率下的电镜图像

    Figure  4.  (a) Fracture surface of baseline under mode I fracture test; ((b), (c)) SEM images of fracture surface at different magnifications

    图  5  裂纹开裂面中CNT与环氧树脂结合形貌

    Figure  5.  Morphology of CNT and epoxy resin in cracking surface

    图  6  (a) 双悬臂梁(DCB)测试过程中的碳纤维桥接;((b)~(e)) 裂纹截面扫描电镜图

    Figure  6.  (a) Carbon fiber bridging during the double cantilever beam (DCB) test; ((b)~(e)) SEM images of crack section

    图  7  (a) 双悬臂梁试样;不同裂纹位置的金相抛光图像((b)~(d))及其对应开裂面的扫描电镜图像((e)~(g))

    Figure  7.  (a) Double cantilever beam specimen; Metallographic polishing images ((b)-(d)) at different cracking positions and SEM images ((e)-(g)) of corresponding cracking surfaces

    图  8  取向CNT纤维纱插层碳纤维/环氧树脂复合材料裂纹偏转之后的II型断裂测试结果:(a) 载荷-位移曲线;(b) II型断裂韧性平均值GIIC

    Figure  8.  Mode II fracture test results of aligned CNT fiber veil interleaved carbon fiber/epoxy composites after crack deflection: (a) Load-extension curves; (b) Mean value of mode II fracture toughness GIIC

    图  9  取向CNT纤维纱插层碳纤维/环氧树脂复合材料裂纹未偏转的II型断裂测试结果:(a) 载荷-位移曲线;(b) II型断裂韧性平均值

    Figure  9.  Mode II fracture test results of aligned CNT fiber veil interleaved carbon fiber/epoxy composites before crack deflection: (a) Load-extension curves; (b) Mean value of mode II fracture toughness

    图  10  基样II型断裂面的扫描电镜图

    Figure  10.  SEM images of the mode II fracture surface of the baseline

    图  11  CNT纤维纱增韧样品II型断裂面的扫描电镜图

    Figure  11.  SEM images of the mode II fracture surface of the CNT veil toughening sample

    表  1  CNT veil参数

    Table  1.   Parameters of CNT veil

    ParameterThickness
    /μm
    Density of surface/(g·m−2)Diameter of CNT/nm
    Value5±0.52.59-3.706-15
    下载: 导出CSV

    表  2  不同区域的断裂韧性对比

    Table  2.   Comparison of fracture toughness at different regions

    Crack length/mmGIC/(J·m−2)
    BaselineCNT veil
    50-75730±901137±43 (+55.8%)
    75-100869±671092±62 (+25.7%)
    50-100810±761112±50 (+37.4%)
    下载: 导出CSV
  • [1] MUGAHED AMRAN Y H, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: A review[J]. Structures,2018,16:208-238. doi: 10.1016/j.istruc.2018.09.008
    [2] BOON Y D, JOSHI S C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites[J]. Materials Today Communications,2020,22:100830. doi: 10.1016/j.mtcomm.2019.100830
    [3] LU W, ZU M, BYUN J H, et al. State of the art of carbon nanotube fibers: Opportunities and challenges[J]. Advanced Materials,2012,24(14):1805-1833.
    [4] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [5] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381(6584):678-680. doi: 10.1038/381678a0
    [6] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science,1997,277(5334):1971-1975.
    [7] OUYANG Q, WANG X, LIU L. High crack self-healing efficiency and enhanced free-edge delamination resistance of carbon fibrous composites with hierarchical interleaves[J]. Composites Science and Technology,2022,217:109115. doi: 10.1016/j.compscitech.2021.109115
    [8] GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon,2009,47(12):2914-2923. doi: 10.1016/j.carbon.2009.06.039
    [9] WARRIER A, GODARA A, ROCHEZ O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix[J]. Composites Part A: Applied Science and Manufacturing,2010,41(4):532-538. doi: 10.1016/j.compositesa.2010.01.001
    [10] KIM M, RHEE K, LEE J, et al. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Composites Part B: Engineering,2011,42(5):1257-1261. doi: 10.1016/j.compositesb.2011.02.005
    [11] DE VOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [12] ALMUHAMMADI K, ALFANO M, YANG Y, et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials & Design,2014,53:921-927.
    [13] WICKS S S, WANG W, WILLIAMS M R, et al. Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes[J]. Composites Science and Technology,2014,100:128-135. doi: 10.1016/j.compscitech.2014.06.003
    [14] BOROWSKI E, SOLIMAN E, KANDIL U F, et al. Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes[J]. Polymers,2015,7(6):1020-1045. doi: 10.3390/polym7061020
    [15] GOJNY F H, WICHMANN M H, FIEDLER B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study[J]. Composites Science and Technology,2005,65(15):2300-2313. doi: 10.1016/j.compscitech.2005.04.021
    [16] VILATELA J J, KHARE R, WINDLE A H. The hierarchical structure and properties of multifunctional carbon nanotube fibre composites[J]. Carbon,2012,50(3):1227-1234. doi: 10.1016/j.carbon.2011.10.040
    [17] OU Y, GONZÁLEZ C, VILATELA J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [18] NGUYEN F, TUN S, HARO A, et al. Interlaminar reinforcement by aligned carbon nanotubes in carbon fiber reinforced polymer composites[C]//19th International Conference on Composite Materials (ICCM). Montréal: ICCM, 2013: 3873-3880.
    [19] NISTAL A, FALZON B G, HAWKINS S C, et al. Enhancing the fracture toughness of hierarchical composites through amino-functionalised carbon nanotube webs[J]. Composites Part B: Engineering,2019,165:537-544. doi: 10.1016/j.compositesb.2019.02.001
    [20] DI LEONARDO S, NISTAL A, CATALANOTTI G, et al. Mode I interlaminar fracture toughness of thin-ply laminates with CNT webs at the crack interface[J]. Composite Structures,2019,225:111178. doi: 10.1016/j.compstruct.2019.111178
    [21] 李强, 殷新意, 于妍妍, 等. 取向碳纳米管/环氧树脂复合薄膜制备及结构/性能表征[J]. 复合材料学报, 2021, 38(9):2767-2775.

    LI Qiang, YIN Xinyi, YU Yanyan, et al. Preparation and characterization of aligned carbon nanotubes/epoxy composite films[J]. Acta Materiae Compositae Sinica,2021,38(9):2767-2775(in Chinese).
    [22] American Society for Testing and Materials. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01[S]. Pennsylvania: ASTM International, 2007.
    [23] American Society for Testing and Materials. Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymermatrix composites: ASTM D7905[S]. Pennsylvania: ASTM International, 2014.
    [24] 张远, 于妍妍, 何静宇, 等. 碳纳米管薄膜增强复合材料I型断裂韧性研究[J]. 炭素技术, 2018, 37(4):15-20, 32.

    ZHANG Yuan, YU Yanyan, HE Jingyu, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Carbon Techniques,2018,37(4):15-20, 32(in Chinese).
    [25] HERRÁEZ M, PICHLER N, BOTSIS J. Improving delamination resistance through tailored defects[J]. Composite Structures,2020,247:112422. doi: 10.1016/j.compstruct.2020.112422
    [26] KHAN R. Fiber bridging in composite laminates: A literature review[J]. Composite Structures,2019,229:111418. doi: 10.1016/j.compstruct.2019.111418
    [27] BASOGLU M F, ZERIN Z, KEFAL A, et al. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks[J]. Computational Materials Science,2019,162:33-46. doi: 10.1016/j.commatsci.2019.02.032
    [28] SHIN Y C, KIM S M. Enhancement of the interlaminar fracture toughness of a carbon-fiber-reinforced polymer using interleaved carbon nanotube buckypaper[J]. Applied Sciences,2021,11(15):6821. doi: 10.3390/app11156821
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  745
  • HTML全文浏览量:  265
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-11-27
  • 录用日期:  2022-12-03
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回