Experimental study on mechanical properties and recoverability of FRP/SMA composites
-
摘要:
目的 为了充分发挥FRP材料的轻质高强特性,一个有效的方法是将预应力引入到FRP片材中。然而,传统的机械式预应力施加方法存在施工复杂、施工空间狭小,预应力损失较大等缺点,限制了预应力FRP片材的推广与应用。因此,急需研究新的方法对FRP片材引入预应力。利用形状记忆合金SMA的回复效应将预应力引入到纤维复合材料FRP中是一种新理念。本文将FRP与SMA复合,形成一种新的复合材料用于结构加固修复中。 方法 结合SMA和FRP两种材料的优异性能,本文提出了一种新的FRP/SMA复合材料主动增强技术。为了测试FRP/SMA复合材料的单轴拉伸性能和回复性能,设计了两种FRP/SMA复合材料试件:第一种类型(I类)的复合材料试件是由CFRP片材与SMA丝在全部长度范围内进行复合,用于测试复合材料的力学性能;第二种类型(II类)的复合材料试件是将FRP片材与SMA丝进行部分复合并留出一段非复合区—激活段,用于对SMA丝通电升温,测试复合材料的回复性能。在力学性能试验中,将SMA丝的数量和直径作为试验变量,分析它们对FRP/SMA复合材料拉伸性能的影响;在受限回复试验中,将SMA丝直径和预应变水平作为试验变量,分析其对SMA丝及FRP/SMA复合材料可回复性能的影响。 结果 常温下形状记忆合金丝在单调拉伸至断裂的过程中主要经历四个阶段,其最大应变可达0.7以上,极限强度900MPa以上。随着应变的增加,SMA丝约在应变幅值为7%后进入强化阶段。FRP/SMA复合材料试件的单轴拉伸基本力学试验研究结果表明,在一定SMA丝掺量范围内,提高掺入SMA丝的数量(体积率)可提高FRP/SMA复合材料试件的最大断裂应变和抗拉强度,且掺入的丝数量越多,断后残余强度越大。掺入丝的直径明显影响FRP/SMA复合材料试件的拉伸弹性模量。SMA丝的回复应力随温度的变化呈明显的上升趋势,在一定预应变范围内,SMA丝的最大回复应力随预应变水平的增加而增加。0.5 mm的SMA丝的预应变水平为8%时,产生的最大回复应力为297 MPa;1.0 mm的SMA丝的预应变水平为8%时,产生的最大回复应力为392 MPa。 结论 本文验证了FRP/SMA复合材料通电回复试验的可行性,FRP/SMA复合材料试件的回复表现出首先缓慢上升,当达到奥氏体相变开始温度后回复应力迅速增长,达到奥氏体相变结束温度后回复应力趋于稳定的趋势。复合试件的最大回复应力与SMA单丝试件表现出类似的现象,但与SMA单丝试件相比,其最大回复应力略有降低。基于复合材料(I类)单轴拉伸试验结果,提出了预测复合材料(I类)试件强度、弹性模量和断裂应变的模型,并与试验值进行对比,预测值与试验值吻合较好。基于SMA丝和复合材料(II类)回复试验结果,提出的基于Brinson模型的修正模型,预测值与试验值吻合较好,可以有效地预测FRP/SMA复合材料的回复应力与温度的关系。 Abstract: Using the recovery effect of shape memory alloy (SMA) to introduce prestress into fiber reinforced polymer (FRP) is a new idea. In this paper, FRP and SMA are compounded to form a new composite material for structural strengthening and repair. The mechanical properties and limited recovery properties of FRP/SMA composites are tested. In the mechanical property test, the number and diameter of SMA wires are taken as test variables, and their effects on the tensile properties of FRP/SMA composites are analyzed; In the limited recovery test, the SMA wire diameter and pre-strain level were taken as test variables to analyze their effects on the recoverable properties of SMA wire and FRP/SMA composites. On the basis of experimental research, the regression equations of recovery stress temperature of SMA wire and FRP/SMA composites are given. The test results show that increasing the number of SMA wires can improve the maximum fracture strain and tensile strength of the composite. The more wires are added, the greater the residual strength after fracture. The diameter of SMA wire significantly affects the tensile elastic modulus of composite specimens. In the limited recovery performance test, the recovery stress of FRP/SMA composites shows an obvious upward trend with the increase of temperature in the phase transition range, and the maximum recovery stress of composites will increase with the increase of pre-strain level. The modified model based on Brinson’s model is proposed, and the predicted values are in good agreement with the experimental values, which can effectively predict the relationship between the recovery stress and temperature of SMA wire and FRP/SMA composites.-
Key words:
- FRP /
- SMA /
- composite material /
- shape memory effect /
- recovery behavior
-
表 1 材料的物理力学性能
Table 1. Physical and mechanical properties of materials
Material Diameter Austenite transition temperature(℃) Martensite transition temperature(℃) Phase transition stress(MPa) Strength
(MPa)Elastic modulus
(GPa)Elongation
(%)Start
AsFinish Af Start Ms Finish Mf SMA wire φ0.5 mm 106.12 121.40 55.34 27.34 122 982 12.2 78 φ1.0 mm 79.13 105.46 59.00 35.81 117 906 10.4 75 CFRP - - - - - 3000 247.7 1.2 Epoxy resin - - - - - 35 2.2 1.6 表 2 两种类型的FRP/SMA复合材料试件
Table 2. Two types of FRP/SMA composite specimens
Specimen type Specimen Number of
SMA wiresDiameter of
SMA
(mm)Prestrain
(%)Length of composite
section
(mm)FRP/SMA-I FRP/SMA-I-0.5-5-4% 5 0.5 4 250 FRP/SMA-I-0.5-10-4% 10 0.5 4 250 FRP/SMA-I-0.5-15-4% 15 0.5 4 250 FRP/SMA-I-1-10-4% 10 1.0 4 250 FRP/SMA-II FRP/SMA-II-1.0-10-4% 10 1.0 4 2×70 FRP/SMA-II-1.0-10-6% 10 1.0 6 2×70 FRP/SMA-II-1.0-10-8% 10 1.0 8 2×70 表 3 FRP/SMA复合材料试验与分析结果
Table 3. Test and analysis results of FRP/SMA composites
Specimen No. Strength(MPa) Elastic modulus(GPa) Fracture strain(%) Failure mode Test value Calculated value Test value / Calculated value Test value Calculated value Test value / Calculated
valueTest value Calculated value Test value / Calculated
valueFRP/SMA-I-0.5-
5-4%1 2206 2840 0.78 158.7 234.7 0.68 1.39 1.2 1.16 Longitudinal splitting 2 2617 0.92 186.9 0.80 1.40 1.17 3 2809 0.98 205.0 0.87 1.37 1.14 FRP/SMA-I-0.5-10-4% 1 2326 2697 0.86 169.7 222.9 0.76 1.32 1.2 1.10 Longitudinal splitting 2 2566 0.95 192.9 0.87 1.33 1.11 3 2828 1.05 212.6 0.95 1.28 1.07 FRP/SMA-I-0.5-15-4% 1 2602 3000 0.87 154.9 212.4 0.73 1.68 1.41 1.19 Burst failure 2 2992 1.04 188.4 0.89 1.65 1.17 3 2999 1.00 196.0 0.92 1.65 1.17 FRP/SMA-I-1.0-10-4% 1 1968 2078 0.95 145.8 171.8 0.85 1.35 1.2 1.13 Longitudinal splitting 2 2085 1.00 156.8 0.91 1.33 1.11 3 2039 0.98 156.8 0.91 1.30 1.08 Average value 0.95 0.85 1.13 Standard deviation 0.08 0.08 0.04 Coefficient of variation 0.08 0.09 0.04 表 4 SMA回复性能试验试件设计与试验结果
Table 4. Design and test results of SMA recovery test specimen
Specimen Length of SMA
(mm)Diameter of SMA
(mm)Prestrain
(%)Average value of maximum recovery stress
(MPa)SMA-0.5-4% 200 0.5 4 202 SMA-0.5-6% 200 0.5 6 273 SMA-0.5-8% 200 0.5 8 288 SMA-0.5-10% 200 0.5 10 295 SMA-1.0-4% 200 1.0 4 267 SMA-1.0-6% 200 1.0 6 312 SMA-1.0-8% 200 1.0 8 391 表 5 FRP/SMA回复性能试验试件设计与试验结果表
Table 5. FRP/SMA recovery test specimen design and test results
Specimen Length of activated section
(mm)Diameter of SMA
(mm)Prestrain
(%)Average value of
maximum
recovery stress (MPa)FRP/SMA-
II-1.0-4%150 1.0 4 247 FRP/SMA-
II-1.0-6%150 1.0 6 284 FRP/SMA-
II-1.0-8%150 1.0 8 358 -
[1] 吴智深, 汪昕, 吴刚, 等. FRP增强工程结构体系[J]. 科学出版社, 2017:10-18.Wu Z S, Wang X, Wu G, et al. FRP reinforced engineering structural systems[J]. Science press,2017:10-18(in Chinese). [2] Zheng Y Z, Wang W W, Mosalam K M, et al. Experimental investigation and numerical analysis of RC beams shear strengthened with FRP/ECC composite layer[J]. Composite Structures,2020,246:112436. doi: 10.1016/j.compstruct.2020.112436 [3] Zhou Y, Gao H, Hu Z, et al. Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams: steel/FRP composite bars[J]. Construction and Building Materials,2021,269:121264. doi: 10.1016/j.conbuildmat.2020.121264 [4] Zheng Y Z, Wang W W, Mosalam K M, et al. Experimental investigation and numerical analysis of RC beams shear strengthened with FRP/ECC composite layer[J]. Composite Structures,2020,246:112436. doi: 10.1016/j.compstruct.2020.112436 [5] Basaran B, Kalkan I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite Structures,2020,242:112185. doi: 10.1016/j.compstruct.2020.112185 [6] Kueres S, Will N, Hegger J. Shear strength of prestressed FRP reinforced concrete beams with shear reinforcement[J]. Engineering Structures,2020,206:110088. doi: 10.1016/j.engstruct.2019.110088 [7] Huang H, Wang W W, Dai J G, et al. Fatigue behavior of reinforced concrete beams strengthened with externally bonded prestressed CFRP sheets[J]. Journal of composites for construction.,2017,21(3):04016108. doi: 10.1061/(ASCE)CC.1943-5614.0000766 [8] Rius J M, Cladera A, Ribas C, et al. Shear strengthening of reinforced concrete beams using shape memory alloys[J]. Construction and building materials,2019,200:420-435. doi: 10.1016/j.conbuildmat.2018.12.104 [9] Zheng B T, El-Tahan M, Dawood M. Shape memory alloy-carbon fiber reinforced polymer system for strengthening fatigue-sensitive metallic structures[J]. Engineering Structures,2018,171:190-201. doi: 10.1016/j.engstruct.2018.05.046 [10] El-Tahan M, Dawood M. Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch[J]. Smart Materials and Structures,2015,25(1):015030. [11] Menna C, Auricchio F, Asprone D. Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications[J]. Elsevier Ltd,2015:369-403. [12] Xue Y J, Wang W W, Tan X, et al. Mechanical behavior and recoverable properties of CFRP shape memory alloy composite under different prestrains[J]. Construction and Building Materials,2022,333:127186. doi: 10.1016/j.conbuildmat.2022.127186 [13] Moslem S. , Christoph C. and Masound M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams[J]. Construction and Building Materials,2016,112(1):28-38. [14] Tran H, Balandraud X, Destrebecq J F. Recovery stresses in SMA wires for civil engineering applications: experimental analysis and thermomechanical modelling[J]. Materials Science & Engineering Techology,2011,42(5):435-443. [15] Issa A, Alam M S. Comparative seismic fragility assessment of buckling restrained and self-centering (friction spring and SMA) braced frames[J]. Smart Materials and Structures,2020,29(5):055029. doi: 10.1088/1361-665X/ab7858 [16] Chen Q, Andrawes B. Cyclic stress–strain behavior of concrete confined with NiTiNb-shape memory alloy spirals[J]. Journal of Structural Engineering,2017,143(5):04017008. doi: 10.1061/(ASCE)ST.1943-541X.0001728 [17] Schranz B, Michels J, Czaderski C, et al. Strengthening and prestressing of bridge decks with ribbed iron-based shape memory alloy bars[J]. Engineering Structures,2021,241:112467. doi: 10.1016/j.engstruct.2021.112467 [18] Nitinol Devices & Components, Inc. (NDC). A Historical Perspective.https://www.nitinol.com/reference/a-historical-perspective. [19] Zafar A, Andrawes B. Seismic behavior of SMA–FRP reinforced concrete frames under sequential seismic hazard[J]. Engineering Structures,2015,98:163-173. doi: 10.1016/j.engstruct.2015.03.045 [20] Zheng B, Dawood M. Fatigue crack growth analysis of steel elements reinforced with shape memory alloy (SMA)/fiber reinforced polymer (FRP) composite patches[J]. Composite Structures,2017,164:158-169. doi: 10.1016/j.compstruct.2016.12.077 [21] Zheng B, Dawood M. Fatigue strengthening of metallic structures with a thermally activated shape memory alloy fiber-reinforced polymer patch[J]. Journal of Composites for Construction,2017,21(4):04016113. doi: 10.1061/(ASCE)CC.1943-5614.0000776 [22] El-Tahan M, Dawood M, Song G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures,2015,24(6):065035. doi: 10.1088/0964-1726/24/6/065035 [23] Qiu Z X, Yao X T, Yuan J, Soutis C, Experimental research on strain monitoring in composite plates using embedded SMA wires, Smart Materials and Structures. 15(4) (2006) 1047-1053. [24] Wang Y Q, Zhang T, Guo S G, et al. Improvement and Experimental Research on the Recovery Stress-Temperature Model of NiTi Shape Memory Alloys[J]. Rare Metal Materials and Engineering,2017,46(1):117-121. [25] Dawood M, El-Tahan M W, Zheng B. Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites[J]. Composites Part B Engineering,2015,77:238-247. [26] El-Tahan M, Dawood M, Song G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures,2015,24(6):065035. doi: 10.1088/0964-1726/24/6/065035 [27] Zheng B, El-Tahan M, Dawood M. Shape memory alloy-carbon fiber reinforced polymer system for strengthening fatigue-sensitive metallic structures[J]. Engineering Structures,2018,171:190-201. doi: 10.1016/j.engstruct.2018.05.046 [28] Hollaway L C, A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties, Construction and Building Materials 24(12) (2010) 2419-2445. [29] El-Hacha R, Aly M Y E. Anchorage system to prestress FRP laminates for flexural strengthening of steel-concrete composite girders[J]. Journal of Composites for Construction,2013,17(3):324-335. doi: 10.1061/(ASCE)CC.1943-5614.0000323 [30] Şakar G, Tanarslan H M, Prestressed CFRP Fabrics for Flexural Strengthening of Concrete Beams with an Easy Prestressing Technique, Mechanics of Composite Materials 50(4) (2014) 537-542. [31] Kueres S, Will N, Hegger J. Shear strength of prestressed FRP reinforced concrete beams with shear reinforcement[J]. Engineering Structures,2020,206:110088. doi: 10.1016/j.engstruct.2019.110088 [32] 中华人民共和国住房与城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB50608-2020 [S]. 北京: 中国计划出版社, 2010.Ministry of Housing and Urban-Rural Development, PRC. Technical specification for construction engineering application of fiber reinforced composite materials [S]. Beijing: China Planning Press, 2010. (in Chinese) [33] 中华人民共和国住房与城乡建设部. 树脂浇铸体拉伸性能试验方法GB/T 2567-2008 [S]. 北京: 中国计划出版社, 2008.Ministry of Housing and Urban-Rural Development, PRC. Test method for tensile properties of resin castings [S]. Beijing: China Planning Press, 2008. (in Chinese) [34] Patoor E, Lagoudas D C, Entchev P B, et al. Shape memory alloys, Part I: General properties and modeling of single crystals[J]. Mechanics of materials,2006,38(5-6):391-429. doi: 10.1016/j.mechmat.2005.05.027 [35] Brinson L C. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of intelligent material systems and structures,1993,4(2):229-242. doi: 10.1177/1045389X9300400213 [36] Brinson L C, Huang M S. Simplifications and comparisons of shape memory alloy constitutive models [J]. Journal of intelligent material systems and structures 1996, 7 (1), 108-114. -

计量
- 文章访问数: 208
- HTML全文浏览量: 87
- 被引次数: 0