留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP/形状记忆合金复合材料力学性能和可回复性能试验研究

惠迎新 薛彦杰 王文炜 谈笑

惠迎新, 薛彦杰, 王文炜, 等. FRP/形状记忆合金复合材料力学性能和可回复性能试验研究[J]. 复合材料学报, 2023, 40(9): 5302-5314. doi: 10.13801/j.cnki.fhclxb.20221206.002
引用本文: 惠迎新, 薛彦杰, 王文炜, 等. FRP/形状记忆合金复合材料力学性能和可回复性能试验研究[J]. 复合材料学报, 2023, 40(9): 5302-5314. doi: 10.13801/j.cnki.fhclxb.20221206.002
HUI Yingxin, XUE Yanjie, WANG Wenwei, et al. Experimental study on mechanical properties and recoverability of FRP/shape memory alloy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5302-5314. doi: 10.13801/j.cnki.fhclxb.20221206.002
Citation: HUI Yingxin, XUE Yanjie, WANG Wenwei, et al. Experimental study on mechanical properties and recoverability of FRP/shape memory alloy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5302-5314. doi: 10.13801/j.cnki.fhclxb.20221206.002

FRP/形状记忆合金复合材料力学性能和可回复性能试验研究

doi: 10.13801/j.cnki.fhclxb.20221206.002
基金项目: 国家自然科学基金(52268077;51878156);宁夏回族自治区重点研发计划(2020 BFG02005)
详细信息
    通讯作者:

    王文炜,博士,教授,博士生导师,研究方向为新材料在桥梁结构中的应用 E-mail: wangwenwei@seu.edu.cn

  • 中图分类号: U441+3

Experimental study on mechanical properties and recoverability of FRP/shape memory alloy composites

Funds: National Natural Science Foundation of China (52268077; 51878156); Key R&D Program of Ningxia Hui Autonomous Region (2020 BFG02005)
  • 摘要: 利用形状记忆合金(SMA)的回复效应将预应力引入到纤维增强复合材料(FRP)中是一种新理念。本文将FRP与SMA复合,形成一种新的复合材料用于结构加固修复中,开展了FRP/SMA复合材料的力学性能和受限回复性能试验。在力学性能试验中,将SMA丝的数量和直径作为试验变量,分析它们对FRP/SMA复合材料拉伸性能的影响;在受限回复试验中,将SMA丝直径和预应变水平作为试验变量,分析其对SMA丝及FRP/SMA复合材料可回复性能的影响。在试验研究的基础上,给出了第一类FRP/SMA复合材料的材料强度、极限应变和弹性模量的预测模型和FRP/SMA复合材料回复应力-温度模型。试验结果表明,在一定掺量内,提高掺入SMA丝的数量能够提高复合材料的最大断裂应变和抗拉强度,掺入的丝数量越多,断后残余强度越大。SMA丝的直径显著影响复合材料试件的拉伸弹性模量。在受限回复性能试验中,FRP/SMA复合材料的回复应力在相变区间内随温度的升高呈明显的上升趋势,复合材料的最大回复应力将会随预应变水平的提高而增大。提出的基于Brinson模型的修正模型,预测值与试验值吻合较好,可以有效地预测SMA丝和FRP/SMA复合材料的回复应力与温度的关系。

     

  • 图  1  纤维增强复合材料(FRP)/形状记忆合金(SMA)复合材料预应力增强系统

    Figure  1.  Fiber reinforced polymer (FRP)/shape memory alloy (SMA) composite prestressed strengthening system

    图  2  SMA丝单调拉伸应力-应变关系曲线

    Figure  2.  Stress-strain relationship of SMA wires in monotonic tension

    σs—Phase transition initiation stress; σf—End-phase change stress

    图  3  两类FRP/SMA复合材料试件

    Figure  3.  Two types of FRP/SMA composite specimens

    图  4  FRP/SMA复合材料的破坏形态

    Figure  4.  Failure modes of FRP/SMA composites

    图  5  FRP/SMA复合材料试件的应力-应变曲线

    Figure  5.  Stress-strain curves of FRP/SMA composite specimen

    图  6  SMA回复试验装置

    Figure  6.  SMA recovery test device

    图  7  0.5 mm SMA丝不同预应变水平情况下回复应力随温度的变化曲线

    Figure  7.  Recovery stress curves of 0.5 mm SMA wire with different pre-strain levels as a function of temperature

    图  8  1.0 mm SMA丝不同预应变水平情况下回复应力随温度的变化曲线

    Figure  8.  Recovery stress and temperature curves of 1.0 mm SMA wire with different pre-strain levels

    图  9  SMA丝回复应力-温度模拟曲线

    Figure  9.  Stress-temperature simulation curves of SMA wire recovery

    图  10  SMA丝最大回复应力试验值和模拟值比较

    Figure  10.  Comparison of the test value and simulation value of maximum recovery stress of SMA wire

    图  11  FRP/SMA复合材料试件受限回复试验

    Figure  11.  Restricted recovery test of FRP/SMA composite specimen

    图  12  FRP/SMA复合材料试件不同预应变水平情况下回复应力随温度的变化曲线

    Figure  12.  Recovery stress curve of FRP/SMA composite specimens with different pre-strain levels as a function of temperature

    表  1  材料的物理力学性能

    Table  1.   Physical and mechanical properties of materials

    MaterialDiameter φ/mmAustenite transition temperature/℃Martensite transition temperature/℃Phase transition stress/MPaStrength/
    MPa
    Elastic modulus/
    GPa
    Elongation/
    %
    Start
    As
    Finish AfStart MsFinish Mf
    SMA wire 0.5 106.12 121.40 55.34 27.34 122 982 12.2 78.0
    1.0 79.13 105.46 59.00 35.81 117 906 10.4 75.0
    CFRP 3000 247.7 1.2
    Epoxy resin 35 2.2 1.6
    Notes: CFRP—Carbon fiber reinfored plastic; Af—Austenite finish temperature; As—Austenite start temperature; Ms—Martensite start temperature; Mf—Martensite finish temperature.
    下载: 导出CSV

    表  2  两种类型的FRP/SMA复合材料试件

    Table  2.   Two types of FRP/SMA composite specimens

    Specimen typeSpecimenNumber of
    SMA wires
    Diameter of
    SMA/
    mm
    Prestrain/
    %
    Length of composite
    section/
    mm
    FRP/SMA-IFRP/SMA-I-0.5-5-4% 50.54250
    FRP/SMA-I-0.5-10-4%100.54250
    FRP/SMA-I-0.5-15-4%150.54250
    FRP/SMA-I-1-10-4%101.04250
    FRP/SMA-IIFRP/SMA-II-1.0-10-4%101.042×70
    FRP/SMA-II-1.0-10-6%101.062×70
    FRP/SMA-II-1.0-10-8%101.082×70
    下载: 导出CSV

    表  3  FRP/SMA复合材料试验与分析结果

    Table  3.   Test and analysis results of FRP/SMA composites

    SpecimenNo.Strength/MPaElastic modulus/GPaFracture strain/%Failure mode
    Test valueCalculated valueTest value/
    calculated value
    Test valueCalculated valueTest value/
    calculated
    value
    Test valueCalculated valueTest value/
    calculated
    value
    FRP/SMA-I-0.5-
    5-4%
    1220628400.78158.7234.70.681.391.21.16Longitudinal splitting
    226170.92186.90.801.401.17
    328090.98205.00.871.371.14
    FRP/SMA-I-0.5-10-4%1232626970.86169.7222.90.761.321.21.10Longitudinal splitting
    225660.95192.90.871.331.11
    328281.05212.60.951.281.07
    FRP/SMA-I-0.5-15-4%1260230000.87154.9212.40.731.681.411.19Burst failure
    229921.04188.40.891.651.17
    329991.00196.00.921.651.17
    FRP/SMA-I-1.0-10-4%1196820780.95145.8171.80.851.351.21.13Longitudinal splitting
    220851.00156.80.911.331.11
    320390.98156.80.911.301.08
    Average value0.950.851.13
    Standard deviation0.080.080.04
    Coefficient of variation0.080.090.04
    下载: 导出CSV

    表  4  SMA回复性能试验试件设计与试验结果

    Table  4.   Design and test results of SMA recovery test specimen

    SpecimenLength
    of SMA/
    mm
    Diameter of SMA/
    mm
    Prestrain/
    %
    Average value of
    maximum recovery
    stress/
    MPa
    SMA-0.5-4%2000.5 4202
    SMA-0.5-6%2000.5 6273
    SMA-0.5-8%2000.5 8288
    SMA-0.5-10%2000.510295
    SMA-1.0-4%2001.0 4267
    SMA-1.0-6%2001.0 6312
    SMA-1.0-8%2001.0 8391
    下载: 导出CSV

    表  5  FRP/SMA回复性能试验试件设计与试验结果

    Table  5.   FRP/SMA recovery test specimen design and test results

    SpecimenLength of activated section/
    mm
    Diameter of SMA/
    mm
    Prestrain/
    %
    Average value of
    maximum
    recovery stress/MPa
    FRP/SMA-
    II-1.0-4%
    1501.04247
    FRP/SMA-
    II-1.0-6%
    1501.06284
    FRP/SMA-
    II-1.0-8%
    1501.08358
    下载: 导出CSV
  • [1] 吴智深, 汪昕, 吴刚, 等. FRP增强工程结构体系[M]. 北京: 科学出版社, 2017: 10-18.

    WU Zhishen, WANG Xin, WU Gang, et al. FRP reinforced engineering structural systems[M]. Beijing: Science Press, 2017: 10-18(in Chinese).
    [2] ZHENG Y Z, WANG W W, MOSALAM K M, et al. Experimental investigation and numerical analysis of RC beams shear strengthened with FRP/ECC composite layer[J]. Composite Structures,2020,246:112436. doi: 10.1016/j.compstruct.2020.112436
    [3] ZHOU Y W, GAO H, HU Z H, et al. Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams: Steel/FRP composite bars[J]. Construction and Building Materials,2021,269:121264. doi: 10.1016/j.conbuildmat.2020.121264
    [4] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite Structures,2020,242:112185. doi: 10.1016/j.compstruct.2020.112185
    [5] KUERES S, WILL N, HEGGER J. Shear strength of prestressed FRP reinforced concrete beams with shear reinforcement[J]. Engineering Structures,2020,206:110088. doi: 10.1016/j.engstruct.2019.110088
    [6] HUANG H, WANG W W, DAI J G, et al. Fatigue behavior of reinforced concrete beams strengthened with externally bonded prestressed CFRP sheets[J]. Journal of Compo-sites for Construction,2017,21(3):04016108. doi: 10.1061/(ASCE)CC.1943-5614.0000766
    [7] RIUS J M, CLADERA A, RIBAS C, et al. Shear strengthening of reinforced concrete beams using shape memory alloys[J]. Construction and Building Materials,2019,200:420-435. doi: 10.1016/j.conbuildmat.2018.12.104
    [8] ZHENG B T, EL-TAHAN M, DAWOOD M. Shape memory alloy-carbon fiber reinforced polymer system for strengthening fatigue-sensitive metallic structures[J]. Engineering Structures,2018,171:190-201. doi: 10.1016/j.engstruct.2018.05.046
    [9] EL-TAHAN M, DAWOOD M. Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch[J]. Smart Materials and Structures,2015,25(1):015030.
    [10] CONCILIO A, ANTONUCCI V, AURICCHIO F, et al. Shape memory alloy engineering: For aerospace, structural and biomedical applications[M]. Amsterdam: Elsevier Ltd., 2015: 369-403.
    [11] XUE Y J, WANG W W, TAN X, et al. Mechanical behavior and recoverable properties of CFRP shape memory alloy composite under different prestrains[J]. Construction and Building Materials,2022,333:127186. doi: 10.1016/j.conbuildmat.2022.127186
    [12] SHAHVERDI M, CZADERSKI C, MOTAVALLI M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams[J]. Construction and Building Materials,2016,112(1):28-38.
    [13] TRAN H, BALANDRAUD X, DESTREBECQ J F. Recovery stresses in SMA wires for civil engineering applications: Experimental analysis and thermomechanical modelling[J]. Materials Science & Engineering Techology,2011,42(5):435-443.
    [14] ISSA A, ALAM M S. Comparative seismic fragility assessment of buckling restrained and self-centering (friction spring and SMA) braced frames[J]. Smart Materials and Structures,2020,29(5):055029. doi: 10.1088/1361-665X/ab7858
    [15] CHEN Q W, ANDRAWES B. Cyclic stress–strain behavior of concrete confined with NiTiNb-shape memory alloy spirals[J]. Journal of Structural Engineering,2017,143(5):04017008. doi: 10.1061/(ASCE)ST.1943-541X.0001728
    [16] SCHRANZ B, MICHELS J, CZADERSKI C, et al. Strengthening and prestressing of bridge decks with ribbed iron-based shape memory alloy bars[J]. Engineering Structures,2021,241:112467. doi: 10.1016/j.engstruct.2021.112467
    [17] XUE Y J, WANG W W, WU Z H, et al. Experimental study on flexural behavior of RC beams strengthened with FRP/SMA composites[J]. Engineering Structures, 2023, 289: 116288.
    [18] ZAFAR A, ANDRAWES B. Seismic behavior of SMA-FRP reinforced concrete frames under sequential seismic hazard[J]. Engineering Structures,2015,98:163-173. doi: 10.1016/j.engstruct.2015.03.045
    [19] ZHENG B T, DAWOOD M. Fatigue crack growth analysis of steel elements reinforced with shape memory alloy (SMA)/fiber reinforced polymer (FRP) composite patches[J]. Composite Structures,2017,164:158-169. doi: 10.1016/j.compstruct.2016.12.077
    [20] ZHENG B, DAWOOD M. Fatigue strengthening of metallic structures with a thermally activated shape memory alloy fiber-reinforced polymer patch[J]. Journal of Composites for Construction,2017,21(4):04016113. doi: 10.1061/(ASCE)CC.1943-5614.0000776
    [21] EL-TAHAN M, DAWOOD M, SONG G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures,2015,24(6):065035. doi: 10.1088/0964-1726/24/6/065035
    [22] QIU Z X, YAO X T, YUAN J A, et al. Experimental research on strain monitoring in composite plates using embedded SMA wires[J]. Smart Materials and Structures, 2006, 15(4): 1047-1053.
    [23] WANG Y Q, ZHANG T, GUO S G, et al. Improvement and experimental research on the recovery stress-temperature model of NiTi shape memory alloys[J]. Rare Metal Materials and Engineering,2017,46(1):117-121.
    [24] DAWOOD M, EL-TAHAN M W, ZHENG B. Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites[J]. Composites Part B: Engi-neering,2015,77:238-247.
    [25] HOLLAWAY L C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials, 2010, 24(12): 2419-2445.
    [26] EL-HACHA R, ALY M Y E. Anchorage system to prestress FRP laminates for flexural strengthening of steel-concrete composite girders[J]. Journal of Composites for Construction,2013,17(3):324-335. doi: 10.1061/(ASCE)CC.1943-5614.0000323
    [27] ŞAKAR G, TANARSLAN H M. Prestressed CFRP fabrics for flexural strengthening of concrete beams with an easy prestressing technique[J]. Mechanics of Composite Materials, 2014, 50(4): 537-542.
    [28] 中华人民共和国住房与城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB/T 50608—2020[S]. 北京: 中国计划出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for construction engineering application of fiber reinforced composite materials: GB/T 50608—2020[S]. Beijing: China Planning Press, 2010(in Chinese).
    [29] 中华人民共和国住房与城乡建设部. 树脂浇铸体拉伸性能试验方法: GB/T 2567—2008[S]. 北京: 中国计划出版社, 2008.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Test method for tensile properties of resin castings: GB/T 2567—2008[S]. Beijing: China Planning Press, 2008(in Chinese).
    [30] PATOOR E, LAGOUDAS D C, ENTCHEV P B, et al. Shape memory alloys, Part I: General properties and modeling of single crystals[J]. Mechanics of Materials,2006,38(5-6):391-429. doi: 10.1016/j.mechmat.2005.05.027
    [31] BRINSON L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structures,1993,4(2):229-242. doi: 10.1177/1045389X9300400213
    [32] BRINSON L C, HUANG M S. Simplifications and comparisons of shape memory alloy constitutive models[J]. Journal of Intelligent Material Systems and Structures, 1996, 7(1): 108-114.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  869
  • HTML全文浏览量:  300
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-11-11
  • 录用日期:  2022-11-21
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回