留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

落叶松材顺纹拉/压-横向剪切复合受力性能研究

谢启芳 韩永刚 张利朋 王莹锦 吴亚杰

谢启芳, 韩永刚, 张利朋, 等. 落叶松材顺纹拉/压-横向剪切复合受力性能研究[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 谢启芳, 韩永刚, 张利朋, 等. 落叶松材顺纹拉/压-横向剪切复合受力性能研究[J]. 复合材料学报, 2024, 42(0): 1-12.
XIE Qifang, HAN Yonggang, ZHANG Lipeng, et al. Research on composite mechanical properties of larch under perpendicular-to-grain tension/compression and transversal shear[J]. Acta Materiae Compositae Sinica.
Citation: XIE Qifang, HAN Yonggang, ZHANG Lipeng, et al. Research on composite mechanical properties of larch under perpendicular-to-grain tension/compression and transversal shear[J]. Acta Materiae Compositae Sinica.

落叶松材顺纹拉/压-横向剪切复合受力性能研究

基金项目: 国家自然科学基金 (52408347, 52178303);陕西省重点研发计划项目(2023-GHZD-03)
详细信息
    通讯作者:

    张利朋,博士,助理教授,研究方向为木材强度准则与本构、古建筑木结构抗震保护 E-mail: lpgzhang@xauat.edu.cn

  • 中图分类号: TU366.2;TB332

Research on composite mechanical properties of larch under perpendicular-to-grain tension/compression and transversal shear

Funds: National Natural Science Foundation of China (52408347, 52178303); Shaanxi Province key research and development plan project (2023-GHZD-03)
  • 摘要: 实际木结构中木材大多同时受到顺纹正应力与横向剪应力复合作用,掌握其复合受力性能是木结构受力分析的重要基础。研发并制作了一种用于测试木材拉/压-剪切复合受力性能的杠杆加载装置与试件,基于此开展了木材顺纹拉/压、横纹剪切以及顺纹正应力与横向剪应力复合加载试验,其中,剪切荷载由单轴试验机提供、拉/压加载由杠杆装置实现。考察了不同拉/压-剪切应力复合作用下木材试件的破坏形态、应力-应变曲线、拉/压-剪切复合强度特性,进一步考察了经典正交各向异性强度准则对落叶松材拉/压-剪切复合受力强度的表征效果,结果表明,Hill准则、Hasebe准则的适用性最好。研究结果可为木结构的精细化受力分析提供重要借鉴。

     

  • 图  1  试件尺寸 (单位:mm)

    Figure  1.  Dimensions of wood specimens (unit: mm)

    图  2  试验装置

    Figure  2.  Test set-up

    图  3  数据测量

    Figure  3.  Data measurement

    图  4  LR试件破坏形态

    Figure  4.  Failure modes of LR specimens

    ft,R—Tensile strength of the specimen; fc,R—Compressive strength of the specimen.

    图  5  LR试件应变分布

    Figure  5.  Strain contour of LR specimens

    图  6  LT试件破坏形态

    Figure  6.  Failure modes of LT specimens

    图  7  LT试件应变分布

    Figure  7.  Strain contour of LT specimens

    图  8  落叶松试件应变分布

    Figure  8.  Strain distribution of larch wood

    "T" is the time it takes to load

    图  9  落叶松试件应力-应变曲线

    Figure  9.  Stress-strain curves of specimens of larch wood

    "DL" means uniaxial tensile loading, "DY" means uniaxial compressive loading, and "J" means shear loading.

    图  10  落叶松试件应力-应变曲线

    Figure  10.  Stress-strain curves of specimens of larch wood

    "LJ" indicates stretch-shear combined loading, and "LY" indicates compression-shear combined loading.

    图  11  落叶松试件抗剪强度、峰值应变和剪切模量的变化

    Figure  11.  Variation of shear strengths, peak strains, and shear moduli of larch wood

    图  12  落叶松试件强度准则的比较

    Figure  12.  Comparison of strength criterion of larch wood

    表  1  试件分组

    Table  1.   Grouping of specimens

    Stress Numbers of normal
    stress levels
    Specimen type
    LR LT
    Uniaxial tension / 3 3
    Uniaxial compression / 3 3
    Shear / 3 3
    Combined
    tension-shear
    4 12 12
    Combined
    compression -shear
    3 9 9
    Notes: In LR and LT specimens, "L" is the longitudinal direction of wood, "R" is the radial direction of wood, and "T" is the chord direction of wood, where "L" represents the tensile/compressive loading direction, and "R" and "R" represent the shear loading direction.
    下载: 导出CSV

    表  2  LR试件材性 (单位:mm)

    Table  2.   Mechanical properties of LR specimens (unit: mm)

    ft,Rfc,Rfv,REtEcG
    Mean value60.2444.6710.7248481.337809.291322.89
    Coefficient of variation7.71%2.72%2.85%27.22%21.52%9.08%
    Notes: “ft,R” is tensile strength, “fc,R” is compressive strength, “fv,R” is shear strength, “Et” is tensile modulus, “Ec” is compression modulus, and “G” is shear modulus.
    下载: 导出CSV

    表  3  LT试件材性(单位:mm)

    Table  3.   Mechanical properties of LT specimens (unit: mm)

    ft,Rfc,Rfv,REtEcG
    Mean value47.1750.1612.2019333.015121.601279.15
    Coefficient of variation8.34%1.83%5.91%12.83%18.71%4.92%
    下载: 导出CSV

    表  4  木材强度准则强度预测能力评估指标

    Table  4.   Evaluation index of strength prediction ability of wood strength criteria

    strength criteria k
    First quadrant Second quadrant Total
    Hill-t 3.10 12.50 15.59
    Hill-c 2.40 9.03 11.43
    Van der put 8.72 9.22 17.94
    Hasebe 3.19 3.93 7.12
    SIA 265 6.44 10.20 16.64
    Note: "k" is the sum of the ratio of the absolute residual value of each data point to the test value.
    下载: 导出CSV
  • [1] 刘伟庆, 杨会峰. 现代木结构研究进展[J]. 建筑结构学报, 2019, 40(2): 16-43.

    LIU Weiqing, YANG Huifeng. Research progress of modern wood structures[J]. Journal of Building Structures, 2019, 40(2): 16-43(in Chinese).
    [2] 孟宪杰, 陈金永, 师希望, 等. 木材横纹全表面受压性能试验研究[J]. 中国科技论文, 2016, 11(1): 62-65. doi: 10.3969/j.issn.2095-2783.2016.01.014

    MENG Xianjie, CHEN Jinyong, SHI Xixing, et al. Experimental study on full surface compression performance of transverse grain wood[J]. Chinese Science and Technology Papers, 2016, 11(1): 62-65(in Chinese). doi: 10.3969/j.issn.2095-2783.2016.01.014
    [3] 谢启芳, 张利朋, 王龙, 等. 东北落叶松材单向顺纹受拉损伤模型[J]. 湖南大学学报(自然科学版), 2017, 44(11): 109-116.

    XIE Qifang, ZHANG Lipeng, WANG Long, et al. Longitudinal strain damage model of larix wood in Northeast China[J]. Journal of Hunan University (Natural Science Edition), 2017, 44(11): 109-116(in Chinese).
    [4] BILKO P, SKORATKO A, RUTKIEWICZ A, et al. Determination of the shear modulus of pine wood with the arcan test and digital image correlation[J]. Materials, 2021, 14(2): 468-486. doi: 10.3390/ma14020468
    [5] 杨娜, 王忠铖, 常鹏. 藏青杨旧材无疵试样力学性质试验研究[J]. 建筑结构学报, 2022, 43(11): 168-176.

    YANG Na, WANG Zhongcheng, CHANG Peng. Experimental study on the mechanical properties of undamaged specimens of old Tibetan poplar[J]. Journal of Building Structures, 2022, 43(11): 168-176(in Chinese).
    [6] 张利朋, 谢启芳, 刘伊津, 等. 循环荷载作用下木材顺纹受力特性与本构模型研究[J]. 土木工程学报, 2024, 57(3): 42-58.

    ZHANG Lipeng, XIE Qifang, LIU Yijin, et al. Study on mechanical behavior and constitutive model of wood under cyclic load[J]. Chinese Journal of Civil Engineering, 2024, 57(3): 42-58(in Chinese).
    [7] 张利朋, 谢启芳, 吴亚杰, 等. 木材本构模型研究进展[J]. 建筑结构学报, 2023, 44(5): 286-304.

    ZHANG Lipeng, XIE Qifang, WU Yajie, et al. Research progress of wood constitutive model[J]. Journal of Building Structure, 2023, 44(5): 286-304(in Chinese).
    [8] 杨庆山, 伍婷, 王娟. 基于三维力学分析模型与灵敏度方法的古建筑木结构模型修正[J/OL]. 工程力学: 1―11[2024-04-18]. http://kns.cnki.net/kcms/detail/11.2595. O3.20231123.1808.014.html.

    YANG Qingshan, WU Ting, WANG Juan. Revision of ancient wooden structure model based on 3D mechanical analysis model and sensitivity method[J/OL]. 1―11 [2024-04-18]. Engineering mechanics: http://kns.cnki. net/kcms/detail/11.2595.O3.20231123.1808.014.html. (in Chinese)
    [9] 2023.0295. (in Chinese)

    2023.0295. (in Chinese) 2024-04-18]. https: //doi. org/10.14006/j. jzjgxb. 2023.0295. PAN Yi, AN Renbing, YOU Wenlong. Ancient wood mechanical properties research progress of mortise and tenon joint nodes[J/OL]. Journal of building structures: 1―18 [2024-04-18]. https://doi.org/10.14006/j.jzjgxb.
    [10] 张利朋, 谢启芳, 吴亚杰, 等. 基于木材弹塑性损伤本构的古建木结构残损梁柱构件损伤非线性分析[J]. 土木与环境工程学报(中英文), 2022, 44(2): 98-106.

    ZHANG Lipeng, XIE Qifang, WU Yajie, et al. Nonlinear damage analysis of damaged beam and column members of ancient wooden structures based on Wood elastic-plastic damage Constitutive Method[J]. Journal of Civil and Environmental Engineering, 2022, 44(2): 98-106(in Chinese).
    [11] MACKENZIE-HELNWEIN P, EBERHARDSTEINER J, MANG H A. A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details[J]. Computational Mechanics, 2003, 31(1): 204-218.
    [12] MACKENZIE-HELNWEIN P, EBERHARDSTEINER J, MANG H A. Rate-independent mechanical behavior of biaxially stressed wood: Experimental observations and constitutive modeling as an orthotropic two-surface elasto-plastic material[J]. Holzforschung, 2005, 59: 311-321. doi: 10.1515/HF.2005.052
    [13] DE MAGISTRIS F, SALMÉN L. Combined shear and compression analysis using the Iosipescu device: analytical and experimental studies of medium density fiberboard[J]. Wood Science and Technology, 2004, 37(6): 509-521. doi: 10.1007/s00226-003-0217-1
    [14] J M CABRERO, C BLANCO, K G GEBREMEDHIN, et al. Assessment of phenomenological failure criteria for wood[J]. Holz als Roh-und Werkstoff, 2012, 70(6): 871-882. doi: 10.1007/s00107-012-0638-3
    [15] 蔡竞. 胶合木材料力学性能研究[D]. 大连: 大连理工大学, 2014.

    CAI Jing. Study on Mechanical properties of glulam materials[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
    [16] AKTER S T, BADER T K. Experimental assessment of failure criteria for the interaction of normal stress perpendicular to the grain with rolling shear stress in Norway spruce clear wood[J]. European Journal of Wood and Wood Products, 2020, 78: 1105-1123. doi: 10.1007/s00107-020-01587-w
    [17] AKTER S T, SERRANO E, BADER T K. Numerical modelling of wood under combined loading of compression perpendicular to the grain and rolling shear[J]. Engineering Structures, 2021, 244: 112800. doi: 10.1016/j.engstruct.2021.112800
    [18] ZHANG Lipeng, HAN Yonggang, XIE Qifang, et al. Mechanical performance of wood subjected to the interaction of transversal tension/compression and longitudinal shear stresses[J]. Construction and Building Materials, 2024, 420 135637.
    [19] GB/T 1927.3-2021, 无疵小试样木材物理力学性质试验方法 第3部分: 生长轮宽度和晚材率测定[S]. 北京: 中国建筑工业出版社.

    GB/T 1927.3-2021, Methods of test for physical and mechanical properties of undefective small specimens of wood - Part 3: Determination of growth ring width and late wood percentage[S]. Beijing: China Architecture and Architecture Press. (in Chinese)
    [20] GB/T 1927.4-2021, 无疵小试样木材物理力学性质试验方法 第4部分: 含水率测定[S]. 北京: 中国建筑工业出版社.

    GB/T 1927.4-2021, Methods of test for physical and mechanical properties of undefective small samples of wood - Part 4: Determination of moisture content[S]. Beijing: China Architecture and Architecture Press. (in Chinese)
    [21] GB/T 1927.5-2021, 无疵小试样木材物理力学性质试验方法 第5部分: 密度测定[S]. 北京: 中国建筑工业出版社.

    GB/T 1927.5-2021, Methods of test for physical and mechanical properties of undefective small specimens of wood - Part 5: Determination of density[S]. Beijing: China Architecture and Architecture Press. (in Chinese)
    [22] GB/T 1927.16-2022, 无疵小试样木材物理力学性质试验方法 第16部分: 顺纹抗剪强度测定[S]. 北京: 中国建筑工业出版社.

    GB/T 1927.16-2022, Methods of test for physical and mechanical properties of undamaged small samples of wood - Part 16: Determination of shear strength along grain[S]. Beijing: China Architecture and Architecture Press. (in Chinese)
    [23] ZHANG Lei, YANG Na. Evaluation of a modified Iosipescu shear test method for determining the shear properties of clear wood[J]. Wood Science and Technology, 2017, 51: 323-343. doi: 10.1007/s00226-016-0888-z
    [24] YANG Na, LI Peng, LAW S S, et al. Experimental research on mechanical properties of timber in ancient Tibetan building[J]. Journal of Materials in Civil Engineering, 2012, 24(6): 635-643. doi: 10.1061/(ASCE)MT.1943-5533.0000438
    [25] 张浩. 纤维增强复合材料剪切试验方法综述[J]. 科技创新导报, 2015, 12(21): 65-66. doi: 10.3969/j.issn.1674-098X.2015.21.029

    ZHANG Hao. Shear test method for fiber reinforced composite material review[J]. Science and technology innovation herald, 2015, 12(21): 65-66. doi: 10.3969/j.issn.1674-098X.2015.21.029
    [26] 徐博瀚, 蔡竞. 木材强度准则的研究进展[J]. 土木工程学报, 2015, 48(1): 64-73.

    XU Bohan, CAI Jing. Research progress of wood strength criteria[J]. Journal of Civil Engineering, 2015, 48(1): 64-73(in Chinese).
    [27] 王明谦, 宋晓滨, 顾祥林. 基于三维弹塑性损伤模型的木材非线性分析[J]. 土木工程学报, 2018, 51(7): 22-28.

    WANG Mingqian, SONG Xiaobin, GU Xianglin. Nonlinear analysis of wood based on three-dimensional elastic-plastic damage model[J]. Journal of Civil Engineering, 2018, 51(7): 22-28(in Chinese).
    [28] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 193(1033): 281-297.
    [29] AZZI V D, TSAI S W. Anisotropic strength of composites: Investigation aimed at developing a theory applicable to laminated as well as unidirectional composites, employing simple material properties derived from unidirectional specimens alone[J]. Experimental mechanics, 1965, 5: 283-288. doi: 10.1007/BF02326292
    [30] HASHIN Z. Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics, 1980, 47: 329-334. doi: 10.1115/1.3153664
    [31] NORRIS C. Strength of orthotropic materials subjected to combined stresses [R]. Madison: US Department of Agriculture, Forest Products Laboratory, 1962.
    [32] VAN DER PUT T A C M. A continuum failure criterion applicable to wood[J]. Journal of Wood Science, 2009, 55: 315-322. doi: 10.1007/s10086-009-1036-2
    [33] TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of composite materials, 1971, 5(1): 58-80. doi: 10.1177/002199837100500106
    [34] HASEBE K, USUKI S. Application of orthotropic failure criterion to wood[J]. Journal of engineering mechanics, 1989, 115(4): 867-872. doi: 10.1061/(ASCE)0733-9399(1989)115:4(867)
    [35] HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite materials, 1967, 1(2): 200-206. doi: 10.1177/002199836700100210
    [36] STEIGER R, GEHRI E. Interaction of shear stresses and stresses perpendicular to the grain. Proc of the CIB-W18 Meeting. Vol. 44. 2011.
    [37] 应鹏杰. 古建筑木结构榫卯节点力学性能分析及精细化数值模拟[D]. 西安: 西安建筑科技大学, 2016.

    YING Pengjie. Mechanical Properties Analysis and Fine Numerical Simulation of mortise and tenon Joints of ancient Wooden Structures[D]. Xi'an: Xi'an University of Architecture & Technology, 2016. (in Chinese)
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-08-05
  • 录用日期:  2024-09-03
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回