留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片增强铝镁基复合泡沫的结构与压缩力学性能

刘雨佳 于浩 邹田春 沙军威 杨旭东

刘雨佳, 于浩, 邹田春, 等. 石墨烯纳米片增强铝镁基复合泡沫的结构与压缩力学性能[J]. 复合材料学报, 2023, 40(10): 5892-5901. doi: 10.13801/j.cnki.fhclxb.20221213.003
引用本文: 刘雨佳, 于浩, 邹田春, 等. 石墨烯纳米片增强铝镁基复合泡沫的结构与压缩力学性能[J]. 复合材料学报, 2023, 40(10): 5892-5901. doi: 10.13801/j.cnki.fhclxb.20221213.003
LIU Yujia, YU Hao, ZOU Tianchun, et al. Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5892-5901. doi: 10.13801/j.cnki.fhclxb.20221213.003
Citation: LIU Yujia, YU Hao, ZOU Tianchun, et al. Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5892-5901. doi: 10.13801/j.cnki.fhclxb.20221213.003

石墨烯纳米片增强铝镁基复合泡沫的结构与压缩力学性能

doi: 10.13801/j.cnki.fhclxb.20221213.003
基金项目: 中央高校基本科研业务费中国民航大学专项(3122020083)
详细信息
    通讯作者:

    邹田春,博士,副教授,硕士生导师,研究方向复合材料、多孔金属材料 E-mail: zoutianchun@126.com

  • 中图分类号: TB331

Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams

Funds: Basic Research Funds for Central Universities, Special Project of Civil Aviation University of China (3122020083)
  • 摘要: 采用机械球磨结合粉末冶金发泡法制备了石墨烯纳米片(GNSs)增强Al-Mg基复合泡沫(G-AMCFs),研究了GNSs对泡沫Al-Mg泡孔形貌、微观组织及准静态压缩力学性能的影响。结果表明,GNSs的加入增加了气孔的形核位点并使MgO在GNSs周围发生偏析。随着GNSs含量的增加,G-AMCFs的泡孔孔径增大;0.25wt%G-AMCFs的压缩力学性能最优,相比于泡沫Al-Mg,其吸能能力提高了43.6%,压缩强度提高了42.9%,平台应力提高了28.1%,同时表现出良好的韧性变形行为。高含量G-AMCFs(0.75wt%)的泡孔结构发生恶化并导致力学性能降低,但压缩强度仍优于泡沫Al-Mg。G-AMCFs的强化方式主要为弥散强化、载荷传递和沉淀强化。

     

  • 图  1  石墨烯纳米片(GNSs)增强铝镁(Al-Mg)基复合泡沫(G-AMCFs)的制备流程示意图

    Figure  1.  Schematic diagram of the preparation process of graphene nanosheets (GNSs) reinforced aluminum-magnesium (Al-Mg) matrix composite foams (G-AMCFs)

    EDM—Electrical discharge machining

    图  2  Cu@GNSs的SEM图像 (a)、TEM图像 ((b)、(c)) 和TG-DSC曲线 (d)

    Figure  2.  SEM image (a), TEM image ((b), (c)) and TG-DSC curves (d) of Cu@GNSs

    图  3  165 r/min球磨120 min后0.25wt%Cu@GNSs/Al复合粉末的SEM图像

    Figure  3.  SEM images of 0.25wt%Cu@GNSs/Al composite powder after 120 min of 165 r/min ball milling

    图  4  GNSs在0.25wt%G-AMCFs制备过程中的Raman图谱

    Figure  4.  Raman spectra of GNSs during preparation of 0.25wt%G-AMCFs

    图  5  泡沫Al-Mg (AFs) (a)、0.25wt%G-AMCFs (b)、0.50wt%G-AMCFs (c) 和0.75wt%G-AMCFs (d) 的泡孔结构

    Figure  5.  Pore structures of foam Al-Mg (AFs) (a), 0.25wt%G-AMCFs (b), 0.50wt%G-AMCFs (c) and 0.75wt%G-AMCFs (d)

    图  6  AFs (a) 和0.5wt%G-AMCFs (b) 的TEM和EDS图像

    Figure  6.  TEM and EDS images of AFs (a) and 0.5wt%G-AMCFs (b)

    图  7  0.25wt%G-AMCFs (a) 和0.75wt%G-AMCFs (b) 的泡孔表面图像

    Figure  7.  Pore surface images of 0.25wt%G-AMCFs (a) and 0.75wt% G-AMCFs (b)

    图  8  不同GNSs含量的G-AMCFs的压缩应力-应变曲线 (a) 和吸能曲线 (b)

    Figure  8.  Compressive stress-strain curves (a) and energy absorption curves (b) of G-AMCFs with different GNSs contents

    图  9  0.25wt%G-AMCFs ((a)~(d)) 和0.75wt%G-AMCFs ((e)~(h)) 的准静态压缩变形行为:((a), (e)) 应变ε=0%;((b), (f)) ε=5%;((c), (g)) ε=10%;((d), (h)) ε=40%

    Figure  9.  Quasi-static compression deformation behavior of 0.25wt%G-AMCFs ((a)-(d)) and 0.75wt%G-AMCFs ((e)-(h)): ((a), (e)) Strain ε=0%; ((b), (f)) ε=5%; ((c), (g)) ε=10%; ((d), (h)) ε=40%

    图  10  AFs (a)、0.25wt%G-AMCFs ((b), (c)) 复合泡沫断口形貌的SEM图像

    Figure  10.  SEM images of fracture morphology of AFs (a), 0.25wt%G-AMCFs ((b), (c)) composite foams

    图  11  Al4Cu9的HRTEM图像 (a) 和矩形区域的快速傅里叶变换(FFT)图像 (b)

    Figure  11.  HRTEM image (a) of Al4Cu9 and fast fourier transform (FFT) diagram (b) of the rectangular region

    表  1  不同GNSs含量的G-AMCFs的力学性能统计值

    Table  1.   Statistical values of mechanical properties of G-AMCFs with different GNSs contents

    Foamsσs/MPaσpl/MPaW/(MJ·m−3)
    AFs4.95.73.67
    0.25wt%G-AMCFs7.07.95.27
    0.50wt%G-AMCFs7.17.34.69
    0.75wt%G-AMCFs5.87.04.74
    Notes: σs—First maximum stress on the stress-strain curve; σpl—Average compressive stress of the compressive strain interval of 20% to 40%; W—Energy value obtained by the integration of the region from 0 to εd; εd—Densification strain.
    下载: 导出CSV
  • [1] GARCÍA-MORENO F. Commercial applications of metal foams: Their properties and production[J]. Materials,2016,9(2):85. doi: 10.3390/ma9020085
    [2] 杨旭东, 李宗岷, 杨昆明, 等. 碳纳米管增强铝基复合泡沫的阻尼性能[J]. 复合材料学报, 2019, 36(2):418-424. doi: 10.13801/j.cnki.fhclxb.20180416.003

    YANG Xudong, LI Zongmin, YANG Kunming, et al. Damping properties of Al matrix composite foams reinforced by carbon nanotubes[J]. Acta Materiae Compositae Sinica,2019,36(2):418-424(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180416.003
    [3] PATEL P, BHINGOLE P P, MAKWANA D. Manufacturing, characterization and applications of lightweight metallic foams for structural applications[J]. Materials Today: Proceedings,2018,5(9):20391-20402. doi: 10.1016/j.matpr.2018.06.414
    [4] YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue,2019,121:272-280. doi: 10.1016/j.ijfatigue.2018.11.008
    [5] DUARTE I, FERREIRA J M F. Composite and nanocomposite metal foams[J]. Materials,2016,9(2):79. doi: 10.3390/ma9020079
    [6] 杨旭东, 毕智超, 陈亚军, 等. 泡沫铝基复合材料的研究进展[J]. 热加工工艺, 2015, 44(8):12-16. doi: 10.14158/j.cnki.1001-3814.2015.08.004

    YANG Xudong, BI Zhichao, CHEN Yajun, et al. Recent advances in aluminum matrix composite foam[J]. Hot Working Technology,2015,44(8):12-16(in Chinese). doi: 10.14158/j.cnki.1001-3814.2015.08.004
    [7] 杨旭东, 郑远兴, 李威挺, 等. Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响[J]. 复合材料学报, 2021, 38(1):186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001

    YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica,2021,38(1):186-197(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200603.001
    [8] YANG X, XIE M, LI W, et al. Controllable design of structural and mechanical behaviors of Al-Si foams by powder metallurgy foaming[J]. Advanced Engineering Materials,2022,24(10):2200125. doi: 10.1002/adem.202200125
    [9] HUANG L, WANG H, YANG D H, et al. Effects of scandium additions on mechanical properties of cellular Al-based foams[J]. Intermetallics,2012,28:71-76. doi: 10.1016/j.intermet.2012.03.050
    [10] WANG H, ZHU D F, HOU S, et al. Cellular structure and energy absorption of AlCu alloy foams fabricated via a two-step foaming method[J]. Materials & Design,2020,196:109090.
    [11] MIYOSHI T, HARA S, MUKAI T, et al. Development of a closed cell aluminum alloy foam with enhancement of the compressive strength[J]. Materials Transactions,2001,42(10):2118-2123. doi: 10.2320/matertrans.42.2118
    [12] MIYOSHI T, NISHI S, FURUTA S, et al. Current activities and new technologies of aluminium foam by melt route[C]//Proceedings of the 4th International Conference on Porous Metals and Metal Foaming Technology (MetFoam 2005). Kyoto: The Japan Institute of Metals, 2005: 21-23.
    [13] YU H, YANG X, LI W, et al. Toughening effects through optimizing cell structure and deformation behaviors of Al-Mg foams[J]. Acta Metallurgica Sinica (English Letters),2022,35(12):2014-2026. doi: 10.1007/s40195-022-01432-4
    [14] BHOGI S, MUDULI B, MUKHERJEE M. Effect of Mg addition on the structure and properties of Al-TiB2 foams[J]. Materials Science and Engineering: A,2020,791:139581. doi: 10.1016/j.msea.2020.139581
    [15] ZHONG W, HOOSHMAND M S, GHAZISAEIDI M, et al. An integrated experimental and computational study of diffusion and atomic mobility of the aluminum-magnesium system[J]. Acta Materialia,2020,189:214-231. doi: 10.1016/j.actamat.2019.12.054
    [16] GOKHALE A A, SAHU S N, KULKARNI V K, et al. Materials issues in foaming of liquid aluminium[C]//Proceedings of the 4th International Conference on Porous Metals and Metal Foaming Technology (MetFoam2005). Kyoto: The Japan Institute of Metals, 2005: 95-100.
    [17] SUZUKI S, MURAKAMI H, KADOI K, et al. Aluminum foam fabrication through the melt route by adding Mg and Bi[C]//Proceedings of the 7th International Conference on Porous Metals and Metallic Foams (MetFoam2011). Busan: GS Intervision, 2011: 18-21.
    [18] OVEISI H, GERAMIPOUR T. High mechanical performance alumina-reinforced aluminum nanocomposite metal foam produced by powder metallurgy: Fabrication, microstructure characterization, and mechanical properties[J]. Materials Research Express,2020,6(12):1250c2. doi: 10.1088/2053-1591/ab608b
    [19] DAS S, RAJAK D K, KHANNA S, et al. Energy absorption behavior of Al-SiC-graphene composite foam under a high strain rate[J]. Materials,2020,13(3):783. doi: 10.3390/ma13030783
    [20] GUO C, ZOU T, SHI C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in situ generated MgAl2O4 whiskers[J]. Materials Science and Engineering: A,2015,645:1-7. doi: 10.1016/j.msea.2015.07.091
    [21] LIN Y, ZHANG Q, MA X, et al. Mechanical behavior of pure Al and Al-Mg syntactic foam composites containing glass cenospheres[J]. Composites Part A: Applied Science and Manufacturing,2016,87:194-202. doi: 10.1016/j.compositesa.2016.05.001
    [22] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [23] AN Y, YANG S, WU H, et al. Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam[J]. Materials & Design,2017,134:44-53.
    [24] LI W, YANG X, YANG K, et al. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets[J]. Journal of Materials Science & Technology,2022,101:60-70.
    [25] ESAWI A, MORSI K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J]. Composites Part A: Applied Science and Manufacturing,2007,38(2):646-650. doi: 10.1016/j.compositesa.2006.04.006
    [26] KUMAR G S V, GARCÍA-MORENO F, BANHART J, et al. The stabilising effect of oxides in foamed aluminium alloy scrap[J]. International Journal of Materials Research,2015,106(9):978-987. doi: 10.3139/146.111255
    [27] ZHANG Y, LI X. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Letters,2017,17(11):6907-6915. doi: 10.1021/acs.nanolett.7b03308
    [28] LI W, YANG X, HE C, et al. Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets[J]. Carbon,2019,153:396-406. doi: 10.1016/j.carbon.2019.07.043
    [29] FISHKIS M. Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal-matrix composites[J]. Journal of Materials Science,1991,26(10):2651-2661. doi: 10.1007/BF02387733
    [30] KÖRNER C, ARNOLD M, SINGER R F. Metal foam stabilization by oxide network particles[J]. Materials Science and Engineering: A,2005,396(1):28-40.
    [31] RIO E, DRENCKHAN W, SALONEN A, et al. Unusually stable liquid foams[J]. Advances in Colloid and Interface Science,2014,205:74-86. doi: 10.1016/j.cis.2013.10.023
    [32] 中国国家标准化管理委员会. 金属材料 延性试验 多孔状和蜂窝状金属压缩试验方法: GB/T 31930—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People's Republic of China. Metallic meterials—Ductility testing—Compression test for porous and cellular metals: GB/T 31930—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [33] MARKAKI A E, CLYNE T W. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams[J]. Acta Materialia,2001,49(9):1677-1686. doi: 10.1016/S1359-6454(01)00072-6
    [34] JIANG Y, TAN Z, FAN G, et al. Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/ Al composites[J]. Carbon,2020,161:17-24. doi: 10.1016/j.carbon.2020.01.032
    [35] YU Z, YANG W, ZHOU C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method[J]. Carbon,2019,141:25-39. doi: 10.1016/j.carbon.2018.09.041
    [36] HUANG L, JIANG L, TOPPING T D, et al. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure[J]. Acta Materialia,2017,122:19-31. doi: 10.1016/j.actamat.2016.09.034
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  307
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-12-01
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回