Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams
-
摘要:
泡沫铝具有低密度、高孔隙率、高比强度等优点,被应用在汽车前后杠、高铁缓冲器、装甲防护、隔音屏障和防火层等方面。然而,泡沫铝的强韧性一般呈倒置关系,即一些泡沫铝的强度高但脆性往往较大,而韧性较好的泡沫铝的强度通常较低,这限制了其在工程领域内的应用。研究表明,泡沫Al-Mg可以在不牺牲韧性的同时在一定程度上提高泡沫铝的强度,但是Mg元素过多会引起泡孔结构缺陷增多,限制了其力学性能的进一步提升。GNSs具有特殊的二维结构,由于其固有的高抗拉强度和高杨氏模量,可以成为泡沫Al-Mg合适的增强体。然而,GNSs对泡沫Al-Mg的影响却鲜有报道。本文采用低能球磨和粉末冶金发泡法制备GNSs增强的Al-Mg基复合泡沫,研究了GNSs对泡孔形态和微观组织的影响;采用准静态压缩实验和数字图像相关法(DIC)对复合泡沫的力学性能和变形机制进行研究。结果表明:GNSs的加入增加了气孔的形核位点并使氧化镁(MgO)在GNSs周围发生偏析。0.25 wt% GNSs/Al-Mg复合泡沫的压缩力学性能最优,相比于泡沫Al-Mg,其吸能能力提高了43.6%,压缩强度提高了42.9%,平台应力提高了28.1%,同时表现出韧脆结合的变形模式。 GNSs/Al-Mg复合泡沫的泡孔结构和准静态压缩应力-应变曲线及吸能能力曲线 Abstract: Graphene nanosheets (GNSs) reinforced aluminum-magnesium (Al-Mg) matrix composite foams (G-AMCFs) were successfully prepared by ball milling and powder metallurgy foaming. The effects of GNSs on pore morphology, microstructure and quasi-static compressive mechanical properties of Al-Mg foams were studied. The results show that the addition of GNSs can increase pore nucleation sites and cause the segregation of magnesium oxide (MgO) around the GNSs. With the increment of GNSs content, the pore size of G-AMCFs increases. The compressive mechanical properties of 0.25 wt% G-AMCFs are the best. Compared with Al-Mg foams, the energy absorption capacity, yield strength and plateau stress of 0.25 wt% G-AMCFs are increased by 43.6%, 42.9% and 28.1%, respectively. Meanwhile, 0.25 wt% G-AMCFs show good ductile deformation behavior. The cell structure with high content of G-AMCFs (0.75 wt%) deteriorates which leads to a decrease in mechanical properties, but the yield strength is still higher than that of Al-Mg foams. The enhancement mechanism of compo-site foams includes dispersion strengthening, load transfer and precipitation strengthening. -
表 1 不同GNSs含量的G-AMCFs的力学性能统计值
Table 1. Statistical values of mechanical properties of G-AMCFs with different GNSs contents
Foams σs /MPa σpl /MPa W (MJ/m3) AFs 4.9 5.7 3.67 0.25 wt% G-AMCFs 7.0 7.9 5.27 0.50 wt% G-AMCFs 7.1 7.3 4.69 0.75 wt% G-AMCFs 5.8 7.0 4.74 Notes: σs − First maximum stress on the stress-strain curve; σpl − The average compressive stress of the compressive strain interval of 20% to 40%; W− The energy value obtained by the integration of the region from 0 to εd -
[1] GARCÍA-MORENO F. Commercial applictions of metal foams: Their properties and production[J]. Materials,2016,9(2):85. doi: 10.3390/ma9020085 [2] 杨旭东, 李宗岷, 杨昆明, 等. 碳纳米管增强铝基复合泡沫的阻尼性能[J]. 复合材料学报, 2019, 36(2):418-424. doi: 10.13801/j.cnki.fhclxb.20180416.003YANG Xudong, LI Zongmin, YANG Kunming, et al. Damping properties of Al matrix composite foam reinforced by carbon nanotubes[J]. Acta Materiae Compositae Sinica,2019,36(2):418-424(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180416.003 [3] PATEL P, BHINGOLE P P, MAKWANA D. Manufacturing, characterization and applications of lightweight metallic foams for structural applications[J]. Materials Today:Proceedings,2018,5(9):20391-20402. doi: 10.1016/j.matpr.2018.06.414 [4] YANG X, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue,2019,121:272-280. doi: 10.1016/j.ijfatigue.2018.11.008 [5] DUARTE I, FERREIRA J M F. Composite and nanocomposite metal foams[J]. Materials,2016,9(2):79. doi: 10.3390/ma9020079 [6] 杨旭东, 毕智超, 陈亚军, 等. 泡沫铝基复合材料的研究进展[J]. 热加工工艺, 2015, 44(8):12-16. doi: 10.14158/j.cnki.1001-3814.2015.08.004YANG Xudong, BI Zhichao, CHEN Yajun, et al. Recent advances in aluminum matrix composite[J]. Hot Working Technology,2015,44(8):12-16(in Chinese). doi: 10.14158/j.cnki.1001-3814.2015.08.004 [7] 杨旭东, 郑远兴, 李威挺, 等. Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响[J]. 复合材料学报, 2021, 38(1):186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of car bon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica,2021,38(1):186-197(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200603.001 [8] YANG X, XIE M, LI W, et al. Controllable Design of Structural and Mechanical Behaviors of Al–Si Foams by Powder Metallurgy Foaming[J]. Advanced Engineering Materials,2022:2200125. [9] HUANG L, WANG H, YANG D H, et al. Effects of scandium additions on mechanical properties of cellular Al-based foams[J]. Intermetallics,2012,28:71-76. doi: 10.1016/j.intermet.2012.03.050 [10] WANG H, ZHU D F, HOU S, et al. Cellular structure and energy absorption of AlCu alloy foams fabricated via a two-step foaming method[J]. Materials & Design,2020,196:109090. [11] MIYOSHI T, HARA S, MUKAI T, et al. Development of a closed cell aluminum alloy foam with enhancement of the compressive strength[J]. Materials Transactions,2001,42(10):2118-2123. doi: 10.2320/matertrans.42.2118 [12] MIYOSHI T, NISHI S, FURUTA S, et al. Current activities and new technologies of aluminium foam by melt route[C]//Proceedings of the 4 th International Conference on Porous Metals and Metal Foaming Technology (MetFoam2005), Kyoto, Japan. 2005: 21-23. [13] YU H, YANG X, LI W, et al. Toughening Effects through Optimizing Cell Structure and Deformation Behaviors of Al–Mg Foams[J]. Acta Metallurgica Sinica (English Letters),2022:1-13. [14] BHOGI S, MUDULI B, MUKHERJEE M. Effect of Mg addition on the structure and properties of Al–TiB2 foams[J]. Materials Science and Engineering:A,2020,791:139581. doi: 10.1016/j.msea.2020.139581 [15] ZHONG W, HOOSHMAND M S, GHAZISAEIDI M, et al. An integrated experimental and computational study ofdiffusion and atomic mobility of the aluminum–magnesium system[J]. Acta Materialia,2020,189:214-231. doi: 10.1016/j.actamat.2019.12.054 [16] GOKHALE A A, SAHU S N, KULKARNI V K, et al. Materials issues in foaming of liquid aluminium[J]. In Proceedings of the 4 th International Conference on Porous Metals and Metal Foaming Technology,2005:95-100. [17] SUZUKI S, MURAKAMI H, KADOI K, et al. Aluminum foam fabrication through the melt route by adding Mg and Bi[J]. In Proceedings of the 7 th International Conference on Porous Metals and Metallic Foams,2011:3-6. [18] OVEISI H, GERAMIPOUR T. High mechanical performance alumina-reinforced aluminum nanocomposite metal foam produced by powder metallurgy: fabrication, microstructure characterization, and mechanical properties[J]. Materials Research Express,2020,6(12):1250c2. doi: 10.1088/2053-1591/ab608b [19] DAS S, RAJAK D K, KHANNA S, et al. Energy absorption behavior of Al-SiC-graphene composite foam under a high strain rate[J]. Materials,2020,13(3):783. doi: 10.3390/ma13030783 [20] GUO C, ZOU T, SHI C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2 O4 whiskers[J]. Materials Science and Engineering:A,2015,645:1-7. doi: 10.1016/j.msea.2015.07.091 [21] LIN Y, ZHANG Q, MA X, et al. Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres[J]. Composites Part A:Applied Science and Manufacturing,2016,87:194-202. doi: 10.1016/j.compositesa.2016.05.001 [22] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996 [23] AN Y, YANG S, WU H, et al. Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam[J]. Materials & Design,2017,134:44-53. [24] LI W, YANG X, YANG K, et al. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets[J]. Journal of Materials Science & Technology,2021,101:60-70. [25] ESAWI A, MORSI K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J]. Composites Part A:Applied Science and Manufacturing,2007,38(2):646-650. doi: 10.1016/j.compositesa.2006.04.006 [26] KUMAR G S V, GARCÍA-MORENO F, BANHART J, et al. The Stabilising Effect of Oxides in Foamed Aluminium Alloy Scrap[J]. International Journal of Materials Research,2015,106(9):978-987. doi: 10.3139/146.111255 [27] ZHANG Y, LI X. Bioinspired, Graphene/Al2 O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness[J]. Nano Letters,2017,17(11):6907-6915. doi: 10.1021/acs.nanolett.7b03308 [28] LI W, YANG X, HE C, et al. Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets[J]. Carbon,2019,153:396-406. doi: 10.1016/j.carbon.2019.07.043 [29] FISHKIS M. Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal-matrix composites[J]. Journal of Materials Science,1991,26(10):2651-2661. doi: 10.1007/BF02387733 [30] KöRNER C, ARNOLD M, SINGER R F. Metal foam stabilization by oxide network particles[J]. Materials Science and Engineering:A,2005,396(1):28-40. [31] RIO E, DRENCKHAN W, Salonen A, et al. Unusually stable liquid foams[J]. Advances in colloid and interface science,2014,205:74-86. doi: 10.1016/j.cis.2013.10.023 [32] 中国国家标准化管理委员会. 金属材料 延性试验 多孔状和蜂窝状金属压缩试验方法: GB/T 31930[S]. 北京: 中国标准出版社, 2015.Standardization Administration of the People’s Republic of China. Metallic meterials-ductility testing-compression test for porous and cellular metals: GB/T 31930[S]. Beijing: China Standards Press, 2005(in Chinese). [33] MARKAKI A E, CLYNE T W. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams[J]. Acta Materialia,2001,49(9):1677-1686. doi: 10.1016/S1359-6454(01)00072-6 [34] KUMAR G S V, GARCÍA-MORENO F, BANHART J, et al. The Stabilising Effect of Oxides in Foamed Aluminium Alloy Scrap[J]. International Journal of Materials Research,2015,106(9):978-987. doi: 10.3139/146.111255 [35] JIANG Y, TAN Z, FAN G, et al. Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites[J]. Carbon,2020,161:17-24. doi: 10.1016/j.carbon.2020.01.032 [36] YU Z, YANG W, ZHOU C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method[J]. Carbon,2019,141:25-39. doi: 10.1016/j.carbon.2018.09.041 [37] HUANG L, JIANG L, TOPPING T D, et al. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure[J]. Acta Materialia,2017,122:19-31. doi: 10.1016/j.actamat.2016.09.034 -

计量
- 文章访问数: 123
- HTML全文浏览量: 126
- 被引次数: 0