留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维对3D打印水泥基材料可打印性的影响

赵宇 武喜凯 朱伶俐 杨章 王有凯

赵宇, 武喜凯, 朱伶俐, 等. 玄武岩纤维对3D打印水泥基材料可打印性的影响[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 赵宇, 武喜凯, 朱伶俐, 等. 玄武岩纤维对3D打印水泥基材料可打印性的影响[J]. 复合材料学报, 2021, 39(0): 1-11
Yu ZHAO, Xikai WU, Lingli ZHU, Zhang YANG, Youkai WANG. The influence of basalt fiber on the printability of 3D printing cement-based materials[J]. Acta Materiae Compositae Sinica.
Citation: Yu ZHAO, Xikai WU, Lingli ZHU, Zhang YANG, Youkai WANG. The influence of basalt fiber on the printability of 3D printing cement-based materials[J]. Acta Materiae Compositae Sinica.

玄武岩纤维对3D打印水泥基材料可打印性的影响

基金项目: 国家自然科学基金(U1504513);国家自然科学基金(No. U1905216);深井瓦斯抽采与围岩控制技术国家地方联合工程实验室开放基金(SJF202006);河南省高等学校重点科研项目(22A560002)
详细信息
    通讯作者:

    朱伶俐,博士在读,副教授,硕士生导师,研究方向为新型建筑材料和矿用材料的研究 E-mail: zhull@hpu.edu.cn

  • 中图分类号: (TU528)

The influence of basalt fiber on the printability of 3D printing cement-based materials

  • 摘要: 玄武岩纤维是一种具备良好力学性能、优异耐腐蚀性且高性价比的纤维材料,将其掺入3D打印水泥基材料中可以起到抑制塑性收缩开裂的作用。而玄武岩纤维的掺入会显著改变3D打印水泥基材料的流变性能,从而对3D打印水泥基材料可挤出性及可建造性产生影响。通过改变纤维的掺量、直径以及长度,研究了玄武岩纤维特性对3D打印水泥基材料流变性能、可挤出性及可建造性的影响,明确了流变性能与可挤出性和可建造性之间的关系。研究结果表明,玄武岩纤维的掺量对3D打印水泥基材料流变性能参数的影响权重最大,其次是直径。动态屈服应力与单位时间挤出量呈负相关,静态屈服应力与打印试件倾角呈正相关。打印试件横截面积比受动态屈服应力和静态屈服应力等综合因素影响。综合来看,优良的可挤出性需要适中的动态屈服应力,约为280 Pa。而优良的可建造性不仅需要适中的动态屈服应力,还需要静态屈服应力大于950 Pa。

     

  • 图  1  玄武岩纤维(a);胶凝材料粒径分布曲线(b)

    Figure  1.  Basalt fiber (a);Cementitious material particle size distribution curve (b)

    图  2  动态屈服应力测试制度示意图

    Figure  2.  Schematic diagram of dynamic yield stress testing system

    图  3  可建造性测试

    Figure  3.  buildability test

    图  4  BF的掺量(a)、长度(b)及直径(c)对3D打印水泥基材料动态屈服应力的影响

    Figure  4.  The influence of BF content (a), length (b) and diameter (c) on the dynamic yield stress of 3D printing cement-based materials

    图  5  BF的掺量(a)、长度(b)及直径(c)对3D打印水泥基材料可挤出性的影响

    Figure  5.  The influence of BF content (a), length (b) and diameter (c) on the extrudability of 3D printing cement-based materials

    图  6  BF对3D打印水泥基材料的可挤出性与动态屈服应力线性拟合示意图

    Figure  6.  Diagram of linear fitting between extrudability and dynamic yield stress of BF on 3D printing cement-based materials

    图  7  BF的掺量(a)、长度(b)及直径(c)对3D打印水泥基材料静态屈服应力的影响

    Figure  7.  Influence of BF content (a), length (b) and diameter (c) on the static yield stress of 3D printing cement-based materials

    图  8  BF的掺量(a)、长度(b)及直径(c)对3D打印水泥基材料可建造性的影响

    Figure  8.  Influence of BF content (a), length (b) and diameter (c) on the buildability of 3D printing cement-based materials

    图  9  M2组(a)、M3组(b)、M4组(c)打印试件照片

    Figure  9.  Photos of M2 group (a), M3 group (b), M4 group (c) printed specimens

    图  10  玄武岩纤维对3D打印水泥基材料的tanα与静态屈服应力线性拟合示意图

    Figure  10.  Schematic diagram of linear fitting between tanα and static yield stress of BF on 3D printing cement-based materials

    表  1  玄武岩纤维(BF)物理力学性能指标

    Table  1.   Physical and mechanical properties of basalt fiber (BF)

    Diameter/μmLength/mmDensity/(g·cm−3)Elastic Modulus/GPaTensile strength/MPaElongation at break/%
    12 μm6 mm、9 mm、12 mm2.6491~1104000~48002.4~3.0
    15 μm6 mm、9 mm、12 mm、18 mm2.6491~1104000~48002.4~3.0
    18 μm6 mm、9 mm、12 mm2.6491~1104000~48002.4~3.0
    下载: 导出CSV

    表  2  3D打印水泥基材料配合比设计

    Table  2.   3D printing cement-based material mix design

    SampleP.O 42.5SACSFSandFXWaterHRWRABasalt Fiber
    M18.510.5140.043.50.089 mm、15 μm、0%
    M28.510.5140.043.50.089 mm、15 μm、0.10%
    M38.510.5140.043.50.089 mm、15 μm、0.30%
    M48.510.5140.043.50.089 mm、15 μm、0.50%
    M58.510.5140.043.50.086 mm、15 μm、0.3%
    M68.510.5140.043.50.0812 mm、15 μm、0.3%
    M78.510.5140.043.50.0818 mm、15 μm、0.3%
    M88.510.5140.043.50.089 mm、12 μm、0.3%
    M98.510.5140.043.50.089 mm、18 μm、0.3%
    Note: P.O 42.5 is ordinary Portland cement; SAC is sulfoaluminate cement; SF is silica fume; FX is dispersible latex powder; HRWRA is polycarboxylic acid superplasticizer; all figures in the table are the weight ratio of sulphoaluminate salt cement (SAC), except for fiber content (volume fraction).
    下载: 导出CSV

    表  3  玄武岩纤维特性正交试验设计方案

    Table  3.   Orthogonal experimental design scheme of basalt fiber properties

    GroupP.O42.5SACSFSandFXw/bHRWRABF FiberCombination
    18.510.5140.043.50.086 mm、0.1%、12 μmA1B1C1
    28.510.5140.043.50.086 mm、0.3%、15 μmA1B2C2
    38.510.5140.043.50.086 mm、0.5%、18 μmA1B3C3
    48.510.5140.043.50.089 mm、0.1%、15 μmA2B1C2
    58.510.5140.043.50.089 mm、0.3%、18 μmA2B2C3
    68.510.5140.043.50.089 mm、0.5%、12 μmA2B3C1
    78.510.5140.043.50.0812 mm、0.1%、18 μmA3B1C3
    88.510.5140.043.50.0812 mm、0.3%、12 μmA3B2C1
    98.510.5140.043.50.0812 mm、0.5%、15 μmA3B3C2
    Notes: PO 42.5 is ordinary Portland cement; SAC is sulfoaluminate cement; SF is silica fume; FX is dispersible latex powder; HRWRA is polycarboxylic acid superplasticizer; all figures in the table are the weight ratio of sulphoaluminate salt cement (SAC), except for fiber content (volume fraction).
    下载: 导出CSV

    表  4  玄武岩纤维对3D打印水泥基材料的动态屈服应力和可挤出性正交试验测试结果

    Table  4.   Orthogonal test results of dynamic yield stress and extrudability of BF on 3D printing cement-based materials

    GroupCombinationDynamic yield stress/PaExtrudability/g
    20 min20 min
    1A1B1C1225.462485
    2A1B2C2279.571830
    3A1B3C3230.362515
    4A2B1C2198.872578
    5A2B2C3219.892577
    6A2B3C1297.511330
    7A3B1C3232.292199
    8A3B2C1321.981255
    9A3B3C2308.431200
    下载: 导出CSV

    表  5  玄武岩纤维对3D打印水泥基材料的动态屈服应力和可挤出性正交试验测试分析结果

    Table  5.   Orthogonal test analysis results of dynamic yield stress and extrudability of BF on 3D printing cement-based materials

    TxDynamic yield stress/PaExtrudability/g
    Length(A)Dosage(B)Diameter(C)Length(A)Dosage(B)Diameter(C)
    T1735.39656.62844.956830.007262.005070.00
    T2716.27821.44786.876485.005662.005608.00
    T3862.70836.30682.544654.005045.007291.00
    t1245.13218.87281.652276.672420.671690.00
    t2238.76273.81262.292161.671887.331869.33
    t3287.57278.77227.511551.331681.672430.33
    Range R48.8159.8954.14725.34739.00740.33
    Superior levelA3B2C1A3B2C2
    Primary and secondary orderB>C>AC>B>A
    Note: Tx is the sum of the test results of the corresponding factors, such as:T1-Length(A)=225.46+279.57+230.36=735.39;
    tx is the mean value of the sum of the test results of the three-factor experiment, such as:
    t1-Length(A)=(225.46+279.57+230.36)÷3=245.13;
    Range R is the difference between the maximum value and the minimum value in the tx value, such as:
    for extrudability testing,Range R-Dosage(B)=2420.67−1681.67=739.00;
    Primary and secondary order are judged based on Range R. The larger the Range R, the greater the influence weight.
    下载: 导出CSV

    表  6  玄武岩纤维对3D打印水泥基材料的可建造性单一变量试验测试结果

    Table  6.   Test results of single variable test for buildability of BF on 3D printing cement-based materials

    GroupFiber parametersBuildability
    High/mmUpper width/mmLower width/mmtanαCross-sectional area ratio
    M19 mm、15 μm、0%72581102.771.80
    M29 mm、15 μm、0.10%75541003.261.72
    M39 mm、15 μm、0.30%79424826.331.06
    M49 mm、15 μm、0.50%78384152.000.92
    M56 mm、15 μm、0.3%78404439.000.98
    M612 mm、15 μm、0.3%783537.562.400.84
    M718 mm、15 μm、0.3%40202180.000.24
    M89 mm、12 μm、0.3%77424638.501.01
    M99 mm、18 μm、0.3%7456943.891.65
    下载: 导出CSV

    表  7  玄武岩纤维对3D打印水泥基材料的可建造性正交试验测试结果

    Table  7.   Orthogonal test results of buildability of BF on 3D printing cement-based materials

    GroupCombinationStatic yield stress/PaBuildability
    20 minHigh/mmUpper width/mmLower width/mmtanαCross-sectional area ratio
    1A1B1C1740.387550785.361.43
    2A1B2C2937.7678404439.001.00
    3A1B3C3751.087648765.431.40
    4A2B1C2700.7875541003.261.76
    5A2B2C3691.977456943.891.65
    6A2B3C11034.53773740.544.000.89
    7A3B1C3726.877452943.521.61
    8A3B2C11085.9475353850.000.81
    9A3B3C21100.7874363949.330.83
    下载: 导出CSV

    表  8  玄武岩纤维对3D打印水泥基材料的静态屈服应力和可建造性正交试验分析结果

    Table  8.   Orthogonal test analysis results of static yield stress and constructability of BF on 3D printing cement-based materials

    TxStatic yield stress/PatanαCross-sectional area ratio
    Length(A)Dosage(B)Diameter(C)Length(A)Dosage(B)Diameter(C)Length(A)Dosage(B)Diameter(C)
    T12429.222168.032860.8549.7912.1499.363.834.803.13
    T22427.282715.672739.3251.1692.8991.594.303.473.59
    T32913.592886.392169.92102.8698.7612.853.253.124.66
    t1809.74722.68953.6216.604.0533.121.281.601.04
    t2809.09905.22913.1117.0530.9630.531.431.161.20
    t3971.20962.13723.3134.2932.924.281.081.041.55
    Range R162.10239.45230.3117.6928.8728.840.350.560.51
    Superior levelA3B3C1A3B3C1A3B3C1
    Primary and secondary orderB>C>AB>C>AB>C>A
    Note: Refer to Table 5 for the meaning and calculation method of each parameter.
    下载: 导出CSV
  • [1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B:Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [2] 马敬畏, 蒋正武, 苏宇峰. 3D打印混凝土技术的发展与展望[J]. 混凝土世界, 2014, 7:41-46.

    MA Jingwei, JIANG Zhengwu, SU Yufeng. The development and prospect of 3D printing concrete technology[J]. Concrete World,2014,7:41-46(in Chinese).
    [3] 丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015, 32(3):1-10. doi: 10.3969/j.issn.2095-0985.2015.03.001

    DING Lieyun, XU Jie, QIN Yawei. Summary of research and application of digital construction technology of architectural 3D printing[J]. Journal of Civil Engineering and Management,2015,32(3):1-10(in Chinese). doi: 10.3969/j.issn.2095-0985.2015.03.001
    [4] SCHUTTER G D, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete-technical, economic and environmental potentials[J]. Cem Concr Res,2018,112:25-36. doi: 10.1016/j.cemconres.2018.06.001
    [5] WU P, WANG J, WANG X Y. A critical review of the use of 3D printing in the construction industry[J]. Automation in Construction,2016,68:21-31. doi: 10.1016/j.autcon.2016.04.005
    [6] MECHTCHERINE V, GRAFE J, NERELLA V N, et al. 3D-printed steel reinforcement for digital concrete construction: manufacture, mechanical properties and bond behaviour[J]. Construction and Building Materials,2018,179:125-137. doi: 10.1016/j.conbuildmat.2018.05.202
    [7] 赵颖, 刘维胜, 王欢, 等. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(S2):1217-1220.

    ZHAO Ying, LIU Weisheng, Wang Huang, et al. The influence of limestone powder on the properties of 3D printing cement-based materials[J]. Materials Reports,2020,34(S2):1217-1220(in Chinese).
    [8] 朱彬荣, 潘金龙, 周震鑫, 等. 3D打印高延性水泥基复合材料的单轴受拉和受压行为[J]. 硅酸盐学报, 2021, 49(5):844-854.

    ZhU Binrong, PAN Jinlong, ZHOU Zhenxin, et al. Uniaxial Tensile and Compressive Stress-Strain Behavior of 3D printed Engineered Cementitious Composites[J]. Journal of The Chinese Ceramic Society,2021,49(5):844-854(in Chinese).
    [9] SOLTAN D G, LI V C. A self-reinforced cementitious composite for building-scale 3D printing[J]. Cement and Concrete Composites,2018,90:1-13. doi: 10.1016/j.cemconcomp.2018.03.017
    [10] OGURA H, NERELLA V N, MECHTCHERINE V. Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing [J]. Materials, 2018, 11(8)
    [11] LE T T, AUSTIN S A, LIM S. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structure,2012,45(8):1221-1232. doi: 10.1617/s11527-012-9828-z
    [12] HAMBACH M, MOLLER H, NEUMANN T, et al. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100<ce: hsp sp="0.25"/>MPa)[J]. Cement and Concrete Research,2016,89:80-86. doi: 10.1016/j.cemconres.2016.08.011
    [13] AL-QUTAIFI S, NAZARI A, BAGHERI A. Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing[J]. Construction and Building Materials,2018,176:690-699. doi: 10.1016/j.conbuildmat.2018.04.195
    [14] BEHZAD N, PRAFUL V, JAY S, et al. Effect of Polypropylene Fibre Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction[J]. Materials,2018,11:12.
    [15] MA G W, LI Z J, WANG L, et al. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing[J]. Construction and Building Materials,2019,202:770-783. doi: 10.1016/j.conbuildmat.2019.01.008
    [16] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites,2017,79:62-70. doi: 10.1016/j.cemconcomp.2017.02.001
    [17] BEHZAD N, PRAFUL V, JAY S, et al. Effect of Polypropylene Fibre Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction[J]. Materials,2018,11:12.
    [18] 张超, 邓智聪, 汪智斌, 等. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6):1870-1878+1888.

    ZHANG Chao, DENG Zhicong, WANG Zhibin, et al. Effects of Fibers on Printing Performance and Mechanical Properties of 3D Printing Concrete[J]. Bulletin of the Chinese Ceramic Society,2021,40(6):1870-1878+1888(in Chinese).
    [19] 胡显奇, 申屠年. 连续玄武岩纤维在军工及民用领域的应用[J]. 高科技纤维与应用, 2005(6):7-13. doi: 10.3969/j.issn.1007-9815.2005.06.002

    HU Xianqi, SHEN Tunian. The Applications of the CBF in War Industry & Civil Fields[J]. Hi-Tech Fiber and Application,2005(6):7-13(in Chinese). doi: 10.3969/j.issn.1007-9815.2005.06.002
    [20] 张雄, 张蕾. 流变学理论在水泥基材料中的应用[J]. 粉煤灰综合利用, 2013(4):9-13. doi: 10.3969/j.issn.1005-8249.2013.04.003

    ZHANG Xiong, ZHANG Lei. Application of rheology theory in cement-based materials[J]. Fly Ash Comprehensive Utilization,2013(4):9-13(in Chinese). doi: 10.3969/j.issn.1005-8249.2013.04.003
    [21] ZHAO Y, DUAN Y H; ZHU L L, et al. Characterization of coarse aggregate morphology and its effect on rheological and mechanical properties of fresh concrete[J]. Construction and Building Materials,2021,286:122940. doi: 10.1016/j.conbuildmat.2021.122940
    [22] 焦登武, 安晓鹏, 史才军, 等. 骨料裹浆厚度对混凝土流变性能的影响[J]. 硅酸盐学报, 2017, 45(9):1360-1366.

    JIAO Dengwu, AN Xiaopeng, SHI Caijun, et al. Effects of Paste Thickness on Coated Aggregates on Rheological Properties of Concrete[J]. Journal of The Chinese Ceramic Society,2017,45(9):1360-1366(in Chinese).
    [23] 杨钱荣, 匡志平 , 李检保 , 等. 3D 打印建筑砂浆工作性测试装置及应用[P]. 中国专利, ZL 201410558243.7, 2014.

    YANG Qianrong, KUANG Zhiping, LI Jianbao, et al. Workability test device and application of 3D printing mortar[P]. China, ZL 201410558243.7, 2014(in Chinese).
    [24] 王亚坤, 杨钱荣. 添加剂对3D打印轻骨料混凝土流变性和可打印性的影响[J/OL]. 建筑材料学报: 1-12

    2020-11-12]. WANG Yakun, YANG Qianrong. Effects of additives on the rheology properties and printability of 3D printing lightweight aggregate concrete[J/OL]. Journal of Building Materials: 1-12 [2020-11-12](in Chinese).
    [25] LONG W J, TAO J L, LIN C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing[J]. Journal of Cleaner Production,2019,239:118054. doi: 10.1016/j.jclepro.2019.118054
    [26] NERELLA V N, NATHER M, IQBAL A, et al. Inline quantification of extrudability of cementitious materials for digital construction[J]. Cement and Concrete Composites,2019,95:260-270. doi: 10.1016/j.cemconcomp.2018.09.015
    [27] WANGLER T, ROUSSEL N, BOS F P, et al. Digital Concrete: A Review. Cement and Concrete Research[J]. 2019, 123,1057:80.
  • 加载中
计量
  • 文章访问数:  85
  • HTML全文浏览量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 录用日期:  2021-11-25
  • 修回日期:  2021-11-08
  • 网络出版日期:  2021-12-23

目录

    /

    返回文章
    返回