留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁吸波材料的研究现状与发展趋势

王一帆 朱琳 韩露 周兴海 高原 吕丽华

王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005
引用本文: 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005
WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005
Citation: WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005

电磁吸波材料的研究现状与发展趋势

doi: 10.13801/j.cnki.fhclxb.20220512.005
基金项目: 辽宁省自然科学基金项目(1645749635925) ;天津工业大学先进纺织复合材料教育部重点实验室开放基金(MATC-2021-003)
详细信息
    通讯作者:

    周兴海,博士,讲师,研究方向为功能性纳微米纤维材料的开发与制备 E-mail:zhouxh@dlpu.edu.cn

  • 中图分类号: TB34

Research status and development trend of electromagnetic absorbing materials

Funds: National Science Foundation of Liaoning Province (1645749635925); Open Project Program of Ministry of Education Key Laboratory for Advanced Textile Composite Materials (Tiangong University)(MATC-2021-003)
  • 摘要: 随着电子设备在军事、通讯、医疗、交通等领域的广泛应用,电磁干扰和电磁辐射问题日益加剧。电磁吸波材料可以将进入材料内部的电磁波能量转化为热能或其他形式的能量耗散掉,是一种直接有效的电磁污染防控手段。因此,国内外研究者围绕高性能吸波材料的开发及应用投入了大量研究。结合国内外研究现状对电磁吸波材料的吸收理论进行了简要概述,并对吸波材料的分类进行了总结归纳,重点探讨了吸波材料结构设计对电磁波吸收性能提升的作用机制,最后从吸波材料应用的“兼容化、复合化、智能化、环保化”方面对其发展趋势进行了展望,旨在为新型及高性能吸波材料的开发提供研究思路和理论依据。

     

  • 图  1  吸波机制示意图

    Figure  1.  Schematic diagram of wave absorbing mechanism

    EM—Electromagnetic

    图  2  (a) 单层稻壳灰/碳纳米管复合材料的仿真模型、样品图及不同参数下的反射损耗图[39];(b) 多层雷达吸波结构的仿真模型、材料截面SEM图像及不同混合方式的反射损耗图[46];(c) SiC气凝胶电磁波损耗机制示意图、SEM图像及反射损耗图[50]

    Figure  2.  (a) Simulation model, sample photo and microwave reflection loss curves of single layer rice husk ash (RHA)/carbon nanotubes (CNTs)[39]; (b) Simulation model, SEM images of cross section and microwave reflection loss curves for the multi-slab hybrid composite[46]; (c) EM wave attenuation mechanism schematic, SEM images and microwave reflection loss curves of the SiC aerogel[50]

    Ht—Magnetic field; Et—Electromagnetic field; RHA—Rice husk ash; CNT—Carbon nanotube; HTangential—Tangential magnetic field; ETangential—Tangential electromagnetic field; θ—Angle of incidence; PEC—Metal back plate; RAS—Radar absorbing structure

    图  3  (a) 中空锶铁氧体纳米纤维的形成机制、不同温度下的TEM图像及反射损耗图[55];(b) CoFe2O4/多孔碳纳米片复合材料微波吸收机制图、SEM图像及不同参数下的三维反射损耗图[59];(c) 液态金属和铜(LC)复合微米颗粒微波吸收机制图、SEM图像及不同参数下的三维反射损耗图[67]

    Figure  3.  (a) Formation mechanism, TEM images under different temperature and microwave reflection loss curves of the hollow SrFe12O19 nanofibers[55]; (b) Microwave absorption mechanism schematic, SEM images and 3D reflection loss plots of CoFe2O4@C composite material[59]; (c) Microwave absorption mechanism schematic, SEM images and 3D reflection loss plots of the LC composite micro-particles[67]

    PVP—Polyvinylpyrrolidone; CFO—CoFe2O4; CN—Carbon nanosheet; 3D-CFO@CN-2, where the number 2 means 2 g glucose; CON-1—Control group prepared without NaCl template; LC—Liquid metal and copper; Pin—Wave of incidence; Pref—Wave of reflection; Pout—Transmitted wave

    图  4  吸波材料的结构设计、分类、应用及发展趋势

    Figure  4.  Structural design, classification, application and development trend of absorbing materials

    表  1  吸波材料的分类

    Table  1.   Classification of wave absorbing materials

    Categories Representative materials Material characteristics
    Carbon series absorbing materials Graphene, graphite, carbon black, carbon fiber, carbon nanotubes Low density, good absorption performance, easy to compound with other absorbers and microstructure can be designed
    Iron series absorbing materials Ferrite, magnetic iron nanomaterials High absorption efficiency, thin coating, wide frequency band and have high specific gravity
    Ceramic series absorbing materials Silicon carbide, silicon carbide composites Excellent mechanical and thermophysical properties
    Conducting polymer absorbing materials Schiff base absorbing materials, ferrocene absorbing materials, conjugated polymer absorbing materials Diverse structure, low density, unique physical and chemical properties
    Chiral absorbing materials Metal chiral microsomes, spiral carbon fibers, chiral conductive polymers High absorption efficiency, wide frequency band, and can adjustable parameters to adjust the absorption characteristics
    Plasma absorbing materials Plasma Unique absorption and refraction properties for electromagnetic waves
    下载: 导出CSV
  • [1] 纳木尔赛罕. C@SiC核壳材料的制备及吸波性能[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    NA Muersaihan. Preparation of C@SiC core-shell materials and its absorbing properties[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [2] ZHOU W, ZHU Z, BAI R. Low-frequency broadband lightweight magnetic composite absorber based on metamaterial structure[J]. Optik,2021,244:167619. doi: 10.1016/j.ijleo.2021.167619
    [3] 王士鹏. 一维核壳结构四氧化三铁基复合材料的制备及其吸波性能研究[D]. 淮北: 淮北师范大学, 2020.

    WANG Shipeng. Preparation and absorption properties of one-dimensional core-shell Fe3O4 based composites[D]. Huaibei: Huaibei Normal University, 2020(in Chinese).
    [4] 赵彦婷. 高磁导率石墨基磁性吸波材料的可控制备与电磁性能研究[D]. 金华: 浙江师范大学, 2018.

    ZHAO Yanting. Controllable fabrication and electromagnetic properties of graphite-based magnetic absorbing materials with high permeability[D]. Jinhua: Zhejiang Normal University, 2018(in Chinese).
    [5] GU Q, JAFARIAN M, AFGHAHI S S S, et al. Tuning the impedance matching characteristics of microwave absorbing paint in X-band using copper particles and polypyrrole coating[J]. Materials Research Bulletin,2020,125:110780. doi: 10.1016/j.materresbull.2020.110780
    [6] SHI Y, YU L, LI K, et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Composites Science and Technology,2020,197:108246. doi: 10.1016/j.compscitech.2020.108246
    [7] 罗道源. BaFe12O19、BaTiO3及其复合体系的制备与微波性能研究[D]. 长沙: 中南大学, 2012.

    LUO Daoyuan. The research on preparation and microwave properties of BaFe12O19, BaTiO3 and their composite systems[D]. Changsha: Central South University, 2012(in Chinese).
    [8] 张珍. 中空碳纳米球复合Fe3O4和Co的电磁波吸收性能研究[D]. 秦皇岛: 燕山大学, 2019.

    ZHANG Zhen. The research on electromagnetic wave absorption performances of hollow carbon nanospheres composites with Fe3O4 and Co[D]. Qinhuangdao: Yanshan University, 2019(in Chinese).
    [9] PANG H, DUAN Y, HUANG L, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B: Engineering,2021,224:109173. doi: 10.1016/j.compositesb.2021.109173
    [10] LI J S, HUANG H, ZHOU Y J, et al. Research progress of graphene-based microwave absorbing materials in the last decade[J]. Journal of Materials Research,2017,32(7):1213-1230. doi: 10.1557/jmr.2017.80
    [11] INDRUSIAK T, PEREIRA I M, PONTES K, et al. Hybrid carbonaceous materials for radar absorbing poly(vinylidene fluoride) composites with multilayered structures[J]. SPE Polymers,2021,2(1):62-73. doi: 10.1002/pls2.10030
    [12] SISTA K S, DWARAPUDI S, KUMAR D, et al. Carbonyl iron powders as absorption material for microwave interference shielding: A review[J]. Journal of Alloys and Compounds,2021,853:157251. doi: 10.1016/j.jallcom.2020.157251
    [13] LEI L, YAO Z, ZHOU J, et al. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance[J]. Composites Science and Technology,2020,200:108479. doi: 10.1016/j.compscitech.2020.108479
    [14] WANG J, REN J, LI Q, et al. Synthesis and microwave absorbing properties of N-doped carbon microsphere composites with concavo-convex surface[J]. Carbon,2021,184:195-206. doi: 10.1016/j.carbon.2021.08.021
    [15] ZHAO X, NIE X, LI Y, et al. A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material[J]. Journal of Materials Chemistry C,2019,7(39):12270-12277. doi: 10.1039/C9TC03254A
    [16] SANTHOSI B, RAMJI K, RAO N B R M. Design and development of polymeric nanocomposite reinforced with graphene for effective EMI shielding in X-band[J]. Physica B: Physics of Condensed Matter,2020,586:412144. doi: 10.1016/j.physb.2020.412144
    [17] YAN J, HUANG Y, WEI C, et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites Part A: Applied Science and Manufacturing,2017,99:121-128. doi: 10.1016/j.compositesa.2017.04.016
    [18] JIANG S, QIAN K, YU K, et al. Controllable synthesis and microwave absorption properties of Fe3O4@f-GNPs nanocomposites[J]. Composites Communications,2020,20:100363. doi: 10.1016/j.coco.2020.100363
    [19] LI L, CHEN K, LIU H, et al. Attractive microwave-absorbing properties of M-BaFe12O19 ferrite[J]. Journal of Alloys and Compounds,2013,557:11-17. doi: 10.1016/j.jallcom.2012.12.148
    [20] BI S, TANG J, WANG D J, et al. Lightweight non-woven fabric graphene aerogel composite matrices for assembling carbonyl iron as flexible microwave absorbing textiles[J]. Journal of Materials Science: Materials in Electronics,2019,30(18):17137-17144. doi: 10.1007/s10854-019-02060-y
    [21] JIANG S, QIAN K, YU K, et al. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption[J]. Chemical Physics Letters,2021,779:138873. doi: 10.1016/j.cplett.2021.138873
    [22] QIAO Z, PAN S, XIONG J, et al. Magnetic and microwave absorption properties of La-Nd-Fe alloys[J]. Journal of Magnetism and Magnetic Materials,2017,423:197-202. doi: 10.1016/j.jmmm.2016.08.093
    [23] DING J, CHEN F, CHEN J, et al. MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance[J]. Journal of the American Ceramic Society,2021,104(4):1772-1784. doi: 10.1111/jace.17596
    [24] CHEN C, ZENG S, HAN X, et al. 3D carbon network supported porous SiOC ceramics with enhanced microwave absorption properties[J]. Journal of Materials Science & Technology,2020,54:223-229.
    [25] ZHANG H, LIU H, WU H, et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society,2022,42(4):1249-1257. doi: 10.1016/j.jeurceramsoc.2021.12.011
    [26] SUN Z G, WANG S J, QIAO X J, et al. Synthesis and microwave absorbing properties of SiC nanowires[J]. Applied Physics A,2018,124(12):1-8.
    [27] DU B, QIAN J, HU P, et al. Fabrication of C-doped SiC nanocomposites with tailoring dielectric properties for the enhanced electromagnetic wave absorption[J]. Carbon,2020,157:788-795. doi: 10.1016/j.carbon.2019.10.029
    [28] SUN T, LIU Z, LI S, et al. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method[J]. Composites Part A: Applied Science and Manufacturing,2021,150:106594. doi: 10.1016/j.compositesa.2021.106594
    [29] 孔德明, 胡慧芳, 冯建辉, 等. 掺杂聚苯胺吸波材料的研究[J]. 高分子材料科学与工程, 2000, 16(3):169-171. doi: 10.3321/j.issn:1000-7555.2000.03.050

    KONG Deming, HU Huifang, FENG Jianhui, et al. Studies on microwave absorption properties of doped polyaniline[J]. Polymer Materials Science and Engineering,2000,16(3):169-171(in Chinese). doi: 10.3321/j.issn:1000-7555.2000.03.050
    [30] 赵静, 林艺, 徐荣臻, 等. 手性吸波材料研究进展[J]. 功能材料, 2013, 44(S1):1-4.

    ZHAO Jing, LIN Yi, XU Rongzhen, et al. Research in chiral absorbing materials[J]. Journal of Functional Materials,2013,44(S1):1-4(in Chinese).
    [31] 李琳. 二茂铁基手性聚Schiff碱的合成与表征及吸波性能研究[D]. 南昌: 南昌航空大学, 2016.

    LI Lin. Synthesis, characterization and electromagnetic wave absorbing properties of ferrocenely-chiral schiff base polymers[D]. Nanchang: Nanchang Hangkong University, 2016(in Chinese).
    [32] REN H, LI T, WANG H, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection[J]. Chemical Engineering Journal,2022,427:131582. doi: 10.1016/j.cej.2021.131582
    [33] 李泽斌, 王海露, 袁承勋, 等. 等离子体复合雷达吸波材料的电磁特性[J]. 电波科学学报, 2018, 33(6):695-700.

    LI Zebin, WANG Hailu, YUAN Chengxun, et al. Electromagnetic characteristics of plasma combining radar absorbing materials[J]. Chinese Journal of Radio Science,2018,33(6):695-700(in Chinese).
    [34] GAO Z, FAN Q, XU C, et al. Compatible stealth design of infrared and radar based on plasmonic absorption structure[J]. Optics Express,2021,29(18):28767-28777. doi: 10.1364/OE.432703
    [35] SHAO T, MA H, WANG J, et al. Ultra-thin and high temperature NiCrAlY alloy metamaterial enhanced radar absorbing coating[J]. Journal of Alloys and Compounds,2020,832:154945. doi: 10.1016/j.jallcom.2020.154945
    [36] PEYMANFAR R, FAZLALIZADEH F. Microwave absorption performance of ZnAl2O4[J]. Chemical Engineering Journal,2020,402:126089. doi: 10.1016/j.cej.2020.126089
    [37] LIANG H, XING H, QIN M, et al. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105959. doi: 10.1016/j.compositesa.2020.105959
    [38] 张泽奎, 张晗, 赵亚娟, 等. 一种单层宽频吸波超材料设计及其性能分析[J]. 电子世界, 2019(9):34-35, 38.

    ZHANG Zekui, ZHANG Han, ZHAO Yajuan, et al. Design and performance analysis of a single layer broadband absorbing metamaterial[J]. Electronics World,2019(9):34-35, 38(in Chinese).
    [39] LEE Y, WEE F, YOU K, et al. Study of single layer microwave absorber based on rice husk Ash/CNTs composites[J]. Indonesian Journal of Electrical Engineering Computer Science,2019,14:929-936. doi: 10.11591/ijeecs.v14.i2.pp929-936
    [40] ZHAN R, ZHANG J, GAO Q, et al. Microwave absorption performance of single-layer and multi-layer structures prepared by CNTs/Fe3O4 nonwoven materials[J]. Crystals,2021,11(8):1000. doi: 10.3390/cryst11081000
    [41] 马觅洋, 张西军, 曾一兵. 多层结构设计在吸波材料中的应用[J]. 宇航材料工艺, 2017, 47(4): 8-13.

    MA Miyang, ZHANG Xijun, ZENG Yibing. Application of multilayer structure design in absorbing materials[J]. Aerospace Materials and Technology, 2017, 47(4): 8-13(in Chinese).
    [42] DONG S, HU P, LI X, et al. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption[J]. Chemical Engineering Journal,2020,398:125588. doi: 10.1016/j.cej.2020.125588
    [43] LI W, XU L, ZHANG X, et al. Investigating the effect of honeycomb structure composite on microwave absorption properties[J]. Composites Communications,2020,19:182-188. doi: 10.1016/j.coco.2020.04.003
    [44] LI W, LIU Y, GUO F, et al. Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance[J]. Applied Surface Science,2021,562:150212. doi: 10.1016/j.apsusc.2021.150212
    [45] GORAI A, MANDAL D, MANDAL K. Multi-layered nano-hollow spheres for efficient electromagnetic wave absorption[J]. Nanotechnology,2021,32(34):345707. doi: 10.1088/1361-6528/ac020e
    [46] JIN D H, JANG M S, CHOI J H, et al. Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity[J]. Composite Structures,2021,273:114279. doi: 10.1016/j.compstruct.2021.114279
    [47] SIMRUNI M, JAM S. Design of high gain, wideband microstrip resonant cavity antenna using FSS superstrate with equivalent circuit model[J]. AEUE-International Journal of Electronics and Communications,2019,112:152935. doi: 10.1016/j.aeue.2019.152935
    [48] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741. doi: 10.1038/127741a0
    [49] HU C, MOU Z, LU G, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption[J]. Physical Chemistry Chemical Physics,2013,15(31):13038-13043. doi: 10.1039/c3cp51253c
    [50] LIANG C, WANG Z. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties[J]. Chemical Engineering Journal,2019,373:598-605. doi: 10.1016/j.cej.2019.05.076
    [51] BAI Y H, XIE B, LI H, et al. Mechanical properties and electromagnetic absorption characteristics of foam cement-based absorbing materials[J]. Construction and Building Materials,2022,330:127221. doi: 10.1016/j.conbuildmat.2022.127221
    [52] LI W, LI C, LIN L, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds,2019,781:883-891. doi: 10.1016/j.jallcom.2018.12.010
    [53] WANG S, HUANG X, ZHANG W. Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties[J]. Applied Physics A,2021,127(10):742. doi: 10.1007/s00339-021-04894-y
    [54] 戚佳一, 丁伟. 中空磁性金属微纳米材料的特性及应用研究进展[J]. 化学教育, 2021, 42(20):1-9.

    QI Jiayi, DING Wei. Research progress in characteristics and applications of hollow magnetic metal micro/nano materials[J]. Chinese Journal of Chemical Education,2021,42(20):1-9(in Chinese).
    [55] WANG Z, ZHAO L, WANG P, et al. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning[J]. Journal of Alloys and Compounds,2016,687:541-547. doi: 10.1016/j.jallcom.2016.06.118
    [56] LI S, LIN L, YAO L, et al. MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,856:158183. doi: 10.1016/j.jallcom.2020.158183
    [57] XIAO T, KUANG J, PU H, et al. Hollow SiC microtube with multiple attenuation mechanisms for broadband electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,862:158032. doi: 10.1016/j.jallcom.2020.158032
    [58] 黄婷. 多级孔吸波材料的制备及性能研究[D]. 厦门: 厦门大学, 2019.

    HUANG Ting. Preparation and properties of hierarchically porous microwave absorbing materials[D]. Xiamen: Xiamen University, 2019(in Chinese).
    [59] XU R, XU D, ZENG Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chemical Engineering Journal,2022,427:130796. doi: 10.1016/j.cej.2021.130796
    [60] CHEN W, ZHAO H, XU B, et al. Rational construction and microwave absorption properties of porous FeOx/Fe/C composites[J]. Journal of Alloys and Compounds,2020,829:154519. doi: 10.1016/j.jallcom.2020.154519
    [61] WEI S, SHI Z, WEI W, et al. Facile preparation of ultralight porous carbon hollow nanoboxes for electromagnetic wave absorption[J]. Ceramics International,2021,47(19):28014-28020. doi: 10.1016/j.ceramint.2021.06.132
    [62] SHI K, LI J, WU Y, et al. Lightweight composite microwave absorbing materials based on graphene aerogels with honeycomb structure[J]. Physica Status Solidi (RRL)–Rapid Research Letters,2019,13(8):1900179. doi: 10.1002/pssr.201900179
    [63] 百晓宇. 类蜂窝状碳/钴复合材料的制备及吸波性能研究[D]. 西安: 陕西科技大学, 2020.

    BAI Xiaoyu. Preparation and electromagnetic wave absorption properties of honeycomb-like C/Co composites[D]. Xi’an: Shaanxi University of Science and Technology, 2020(in Chinese).
    [64] 邓云飞, 张海燕, 韩聪爱, 等. 三维蜂窝状碳包纳米铁颗粒复合材料的制备及吸波性能的研究[J]. 材料研究与应用, 2020, 14(3):171-178. doi: 10.3969/j.issn.1673-9981.2020.03.002

    DENG Yunfei, ZHANG Haiyan, HAN Cong’ai, et al. Preparation of three-dimensional honeycomb carbon-coated nano-iron particle composites and research on its microwave absorption properties[J]. Materials Research and Application,2020,14(3):171-178(in Chinese). doi: 10.3969/j.issn.1673-9981.2020.03.002
    [65] WU T, LIU Y, ZENG X, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption[J]. ACS Applied Materials & Interfaces,2016,8(11):7370-7380.
    [66] CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials,2004,16(5):401-405. doi: 10.1002/adma.200306460
    [67] WANG Y, GAO Y N, YUE T N, et al. Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption[J]. Journal of Colloid and Interface Science,2022,607:210-218. doi: 10.1016/j.jcis.2021.08.206
    [68] WANG M, LIN Y, YANG H, et al. A novel plate-like BaFe12O19@MoS2 core-shell structure composite with excellent microwave absorbing properties[J]. Journal of Alloys and Compounds,2020,817:153265. doi: 10.1016/j.jallcom.2019.153265
    [69] SHI X L, CAO M S, FANG X Y. Β-MnO2/SiO2 core-shell nanorods: Synthesis and dielectric properties[J]. Journal of Nanoscience and Nanotechnology,2011,11(8):6953-6958. doi: 10.1166/jnn.2011.4252
    [70] SHI X L, CAO M S, FANG X Y, et al. High-temperature dielectric properties and enhanced temperature-response attenuation of β-MnO2 nanorods[J]. Applied Physics Letters,2008,93(22):223112. doi: 10.1063/1.3042210
    [71] GHASEMLOU M, LE P H, DAVER F, et al. Robust and eco-friendly superhydrophobic starch nanohybrid materials with engineered lotus leaf mimetic multiscale hierarchical structures[J]. ACS Applied Materials & Interfaces,2021,13(30):36558-36573.
    [72] JIA Z, LIN K, WU G, et al. Recent progresses of high-temperature microwave-absorbing materials[J]. Nano,2018,13(6):1830005. doi: 10.1142/s1793292018300050
    [73] YE Z, WANG K, LI X, et al. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials[J]. Journal of Alloys and Compounds,2022,893:162396. doi: 10.1016/j.jallcom.2021.162396
    [74] WU J, HU R, ZENG S, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces,2020,12(16):19015-19022.
    [75] LIU Q, ZENG M, LIU J, et al. Fe-based material@N-doped carbon composites as environment-friendly microwave absorbers[J]. Carbon,2021,171:646-657. doi: 10.1016/j.carbon.2020.09.045
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  4225
  • HTML全文浏览量:  1183
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-04-15
  • 录用日期:  2022-05-03
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回