留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳点/CeVO4纳米复合物协同可见光活化过一硫酸盐降解盐酸四环素

李世嘉 庞尔楠

李世嘉, 庞尔楠. 碳点/CeVO4纳米复合物协同可见光活化过一硫酸盐降解盐酸四环素[J]. 复合材料学报, 2024, 41(10): 5326-5335.
引用本文: 李世嘉, 庞尔楠. 碳点/CeVO4纳米复合物协同可见光活化过一硫酸盐降解盐酸四环素[J]. 复合材料学报, 2024, 41(10): 5326-5335.
LI Shijia, PANG Ernan. CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5326-5335.
Citation: LI Shijia, PANG Ernan. CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5326-5335.

碳点/CeVO4纳米复合物协同可见光活化过一硫酸盐降解盐酸四环素

基金项目: 山西工程科技职业大学校科技创新基金(202229)
详细信息
    通讯作者:

    李世嘉,博士研究生,讲师,研究方向:高级氧化法降解水中有机污染物 E-mail:lishijia@sxgkd.edu.cn

  • 中图分类号: TB333

CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation

Funds: Science and Technology Innovation Fund of Shanxi Vocational University of Engineering Science and Technology (NO.202229)
  • 摘要: CeVO4因其对可见光较低的利用率和光生电子空穴对易于复合的缺点限制其在光催化领域中的应用。碳点(CDs)具有独特的π共轭结构赋予其优异的光生电子存储和转移能力。本研究采用水热和共沉淀两步法成功制备出CDs与CeVO4的纳米复合物(CDs/CeVO4),在掺入CDs后,其光生载流子的转移和分离效率得到有效提高。在可见光照射下,CDs/CeVO4能高效活化过一硫酸盐(PMS)降解盐酸四环素(TC),反应60 min后对TC的降解率达到90 %。反应速率常数是CeVO4的4.1倍(0.03815 min−1)。XPS、紫外可见漫反射光谱和时间分辨荧光光谱测试结果表明,CDs/CeVO4相比于CeVO4带隙变窄,可见光吸收能力增强,荧光寿命是CeVO4的15.1倍(7.1 ns)。EPR与XPS测试结果相互印证掺入CDs的纳米复合物中存在丰富的氧空位,进一步增强其活化PMS能力。活性物质捕获实验表明,h+、SO4·−和·OH是反应体系中的活性物质,在此基础上提出了该体系可能的降解机制。CDs/CeVO4表现出良好的稳定性,经过五次循环实验后,仍表现出良好的催化性能。CDs/CeVO4协同可见光活化PMS降解水中有机污染物为废水治理提供一种新的方法和思路。

     

  • 图  1  CeVO4和碳点(CDs)/ CeVO4复合催化剂的(a) XRD图谱,(b) FTIR图谱和(c) Raman图谱

    Figure  1.  (a) XRD patterns, (b) FTIR spectra and (c) Raman spectra of CeVO4 and carbon dots(CDs)/ CeVO4 composite catalyst

    图  2  CeVO4的(a) TEM和(b) HRTEM,CDs/CeVO4的(c) TEM和(d) HRTEM,(e) CDs/CeVO4的EDS图

    Figure  2.  (a) TEM and (b) HRTEM images of CeVO4. (c) TEM and (d) HRTEM images of CDs/CeVO4. (e) The EDS images of CDs/CeVO4

    图  3  XPS谱:CDs/CeVO4和CeVO4的(a) 全谱图,(b) O 1s,(c) Ce 3d和(d) V 2p谱图,(e) CDs/CeVO4的C 1s谱,(f) CeVO4和CDs/CeVO4的EPR谱图

    Figure  3.  XPS spectra: (a) full survey, (b) O 1s, (c) O 1s, (c) Ce 3d and (d) V 2p of CDs/CeVO4 and CeVO4. (e) C1s spectra of CDs/CeVO4. (f) EPR spectra of CeVO4 and CDs/CeVO4.

    图  4  CDs/CeVO4和CeVO4的(a) 紫外可见漫反射光谱,(b) 相应的Tauc-plot图和(c) VB-XPS图

    Figure  4.  (a) UV-visible diffuse reflectance spectra of CDs/CeVO4 and CeVO4, (b) the corresponding Tauc-plot and (c) VB-XPS

    图  5  CDs/CeVO4 and CeVO4的时间分辨荧光光谱

    Figure  5.  Time-resolved fluorescence spectra of CDs/CeVO4 and CeVO4

    图  6  (a) 不同催化体系在光照和未光照下降解TC效率,(b) 不同催化体系反应速率常数

    Figure  6.  (a) The efficiency of different catalytic systems on TC degradation with or not light irradiation. (b) Reaction rate constants for different catalytic systems

    图  7  (a) CDs/CeVO4的循环稳定性,(b) 新制备和使用过的CDs/CeVO4的XRD图

    Figure  7.  Cyclic stability of CDs/CeVO4. (b) XRD patterns of new and used CDs/CeVO4

    图  8  CDs/CeVO4和CeVO4的(a)瞬态光电流响应和(b)电化学阻抗图

    Figure  8.  (a) The photocurrent responses and (b) the electrochemical impedance spectra of CDs/CeVO4 and CeVO4

    图  9  加入不同捕获剂对TC降解率的影响

    Figure  9.  Effect of adding different trapping agents on TC degradation rate

    图  10  光照下CDs/CeVO4活化PMS机制

    Figure  10.  The activation PMS mechanism of CDs/CeVO4 under light irradiation

    表  1  不同碳点含量的复合催化剂活化PMS降解TC效率

    Table  1.   The efficiency of composite catalysts with different CDs content on TC degradation by activating PMS

    Catalyst CDs/g Ce(NO3)3/g NH4VO3/g C/C0/%
    CDs/CeVO4-2 0.027 0.271 0.059 70
    CDs/CeVO4-4 0.054 0.271 0.059 90 this work
    CDs/CeVO4-8 0.108 0.271 0.059 72
    Notes:The catalyst (CDs/CeVO4-4) with the highest degradation rate is used in this work. C0 and C represent the concentrations of TC at time 0 and t, respectively.
    下载: 导出CSV
  • [1] OYEKUNLE D T, GENDY E A, IFTHIKAR J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: A review[J]. Chemical Engineering Journal, 2022, 437: 135277. doi: 10.1016/j.cej.2022.135277
    [2] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [3] WACŁAWEK S, LUTZE H V, GRüBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132
    [4] NORZAEE S, TAGHAVI M, DJAHED B, et al. Degradation of Penicillin G by heat activated persulfate in aqueous solution[J]. Journal of Environmental Management, 2018, 215: 316-323.
    [5] PAN Y, ZHANG Y, ZHOU M, et al. Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0[J]. Chemical Engineering Journal, 2019, 361: 908-918. doi: 10.1016/j.cej.2018.12.135
    [6] ZHANG T T, YANG Y L, LI X, et al. Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239: 116537. doi: 10.1016/j.seppur.2020.116537
    [7] TIAN D Q, ZHOU H Y, ZHANG H, et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies[J]. Chemical Engineering Journal, 2022, 428: 131166. doi: 10.1016/j.cej.2021.131166
    [8] LIU J J, HE H, SHEN Z R, et al. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: Process and mechanism[J]. Journal of Hazardous Materials, 2022, 429: 128398. doi: 10.1016/j.jhazmat.2022.128398
    [9] YANG J L, ZHU M S, DIONYSIOU D D. What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Research, 2021, 189: 116627. doi: 10.1016/j.watres.2020.116627
    [10] MING H B, WEI D L, YANG Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. doi: 10.1016/j.cej.2021.130296
    [11] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104. doi: 10.1016/j.apcatb.2018.02.011
    [12] CHEN G L, SI X L, YU J S, et al. Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes[J]. Applied Surface Science, 2015, 330: 191-199. doi: 10.1016/j.apsusc.2015.01.011
    [13] LI J N, LI X Y, WANG X, et al. Multiple regulations of Mn-based oxides in boosting peroxymonosulfate activation for norfloxacin removal[J]. Applied Catalysis A: General, 2019, 584: 117170. doi: 10.1016/j.apcata.2019.117170
    [14] YIN C, LIU Y L, LV X Y, et al. Carbon dots as heterojunction transport mediators effectively enhance BiOI/g-C3N4 synergistic persulfate degradation of antibiotics[J]. Applied Surface Science, 2022, 601: 154249. doi: 10.1016/j.apsusc.2022.154249
    [15] LIU X, YANG Y, LI H, et al. Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots[J]. Chemical Engineering Journal, 2021, 408: 127259. doi: 10.1016/j.cej.2020.127259
    [16] YOU Q L, ZHANG Q X, GU M B, et al. Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac[J]. Chemical Engineering Journal, 2022, 431: 133927. doi: 10.1016/j.cej.2021.133927
    [17] HAN W Y, LI D G, ZHANG M Q, et al. Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots[J]. Journal of Hazardous Materials, 2020, 395: 122695. doi: 10.1016/j.jhazmat.2020.122695
    [18] SONG Y, WANG R, LI X Y, et al. Constructing a novel Ag nanowire@CeVO4 heterostructure photocatalyst for promoting charge separation and sunlight driven photodegradation of organic pollutants[J]. Chinese Chemical Letters, 2022, 33(3): 1283-1287. doi: 10.1016/j.cclet.2021.07.060
    [19] ZHANG L J, HAO X Q, LI J K, et al. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1): 82-94. doi: 10.1016/S1872-2067(19)63454-6
    [20] CHANG M Y, WANG M F, CHEN Y Q, et al. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance[J]. Nanoscale, 2019, 11(20): 10129-10136. doi: 10.1039/C9NR02412C
    [21] OTHMAN I, HISHAM ZAIN J, ABU HAIJA M, et al. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway[J]. Applied Catalysis B: Environmental, 2020, 266: 118601. doi: 10.1016/j.apcatb.2020.118601
    [22] HUANG J H, ZHU B K, SONG D B, et al. Synergistic photocatalysis for naphthalene (NAP) removal in seawater by S-scheme heterojunction Bi2S3/CeVO4: Mechanistic investigation and degradation pathways[J]. Chemical Engineering Journal, 2023, 464: 142784. doi: 10.1016/j.cej.2023.142784
    [23] ZHANG Y Y, LI Y, YUAN Y, et al. C-dots decorated SrTiO3/NH4V4O10 Z-scheme heterojunction for sustainable antibiotics removal: Reaction kinetics, DFT calculation and mechanism insight[J]. Separation and Purification Technology, 2022, 295: 121268. doi: 10.1016/j.seppur.2022.121268
    [24] LI Q, REN J, HAO Y J, et al. Insight into reactive species-dependent photocatalytic toluene mineralization and deactivation pathways via modifying hydroxyl groups and oxygen vacancies on BiOCl[J]. Applied Catalysis B: Environmental, 2022, 317: 121761. doi: 10.1016/j.apcatb.2022.121761
    [25] MING H B, WEI D L, YANG Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. doi: 10.1016/j.cej.2021.130296
    [26] LI Q S, LU H, WANG X L, et al. Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation[J]. Chemical Engineering Journal, 2022, 443: 136473. doi: 10.1016/j.cej.2022.136473
    [27] GHOSH U, PAL A. Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination[J]. Chemical Engineering Journal, 2022, 431: 133914. doi: 10.1016/j.cej.2021.133914
    [28] 郝彩红, 杨泽鹏, 常青, 等. 碳点/g-C3N4复合催化剂的制备及其光催化性能[J]. 复合材料学报, 2023, 40(10): 5811-5819.

    HAO C H, YANG Z P, CHANG Q, et al. Preparation and photocatalytic performance of carbon dots/g-C3N4 composite catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819(in Chinese).
    [29] 夏慧芸, 燕敏杰, 吕昕, 等. 隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能[J]. 复合材料学报, 2023, 40(10): 5782-5791.

    XIA H Y, YAN M J, LV X, et al. Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5782-5791(in Chinese).
    [30] LEELADEVI K, ARUNPANDIAN M, KUMAR J V, et al. Fabrication of 3D pebble-like CeVO4/g-C3N4 nanocomposite: a visible light-driven photocatalyst for mitigation of organic pollutants[J]. Diamond and Related Materials, 2021, 116(108424): 108424.
    [31] FAN C, LIU Q Q, MA T D, et al. Fabrication of 3D CeVO4 /graphene aerogels with efficient visible-light photocatalytic activity[J]. Ceramics International, 2016, 42(8): 10487-10492. doi: 10.1016/j.ceramint.2016.03.072
    [32] ZHU Y M, ZHANG L, ZHAO B T, et al. Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides[J]. Advanced Functional Materials, 2019, 29(34): 1901783. doi: 10.1002/adfm.201901783
    [33] ZHANG B B, WANG L, ZHANG Y J, et al. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation[J]. Angewandte Chemie international Edition, 2018, 57(8): 2248-2252. doi: 10.1002/anie.201712499
    [34] CHEN F, MA Z Y, YE L Q, et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals[J]. Advanced Materials, 2020, 32(11): 1908350. doi: 10.1002/adma.201908350
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-05-27
  • 录用日期:  2024-06-08
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回