留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能

沈峥 徐超 张一帆 李湘 何泽 高娜 杨婷 李晓鹏 李和国 张明明 徐欢

沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J]. 复合材料学报, 2024, 42(0): 1-11.
SHEN Zheng, XU Chao, ZHANG Yifan, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance[J]. Acta Materiae Compositae Sinica.
Citation: SHEN Zheng, XU Chao, ZHANG Yifan, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance[J]. Acta Materiae Compositae Sinica.

高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能

基金项目: 国家自然科学基金(52003292;52174222);国家重点研发计划(2023YFC3011704);江苏省自然科学基金(BK20200661);高分子材料工程国家重点实验室开放课题基金资助(sklpme2023-3-6)和中央高校基本科研业务费专项资金(2021QN1115)
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士研究生导师,研究方向为可降解高分子材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: TB332

MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance

Funds: National Natural Science Foundation of China (52003292, 52174222); National Key R&D Program (2023YFC3011704); Natural Science Foundation of Jiangsu Province (BK20200661); Funded by Open Topic Fund of State Key Laboratory of Polymer Materials Engineering (sklpme2023-3-6) and Special Funds for Basic Research Operating Costs of Central Universities (2021QN1115)
  • 摘要: 聚乳酸(PLA)由于其生物可降解性在空气过滤领域具有良好的应用前景,但因其自身较低的电活性以及受到高湿度环境的影响,致使过滤效率不高。为此,采用微波辅助法合成了结构规整、极小尺寸(~500 nm)的金属有机框架MOF-5,进而通过静电纺丝-喷雾技术将不同负载量的MOF-5锚定于PLA纤维表面(PLA/MOF)。在负载量为8wt%时,介电常数和表面电势分别是纯PLA纳米纤维膜(纳纤膜)的2.3倍和3倍,PLA/MOF纳纤膜的电活性显著提升,摩擦电输出电压可达65.8 V。与纯PLA纳纤膜相比,PLA/MOF纳纤膜对PM0.3过滤效率大幅提高,均可达到96%以上。在高湿环境(RH=90%),空气流速为85 L/min时,8wt%负载量的PLA/MOF纳纤膜的过滤效率也可达到90%以上。这种基于提高PLA电活性的MOF化纳纤膜在高湿度环境下滤除PM0.3等人体呼吸安全领域具有广阔应用前景。

     

  • 图  1  MOF-5纳米颗粒和聚乳酸(PLA)/MOF纳纤膜的制备流程示意图

    Figure  1.  Schematic of the preparation process of MOF-5 nanoparticles and polylactic acid (PLA)/MOF nanofiber membranes

    图  2  MOF-5纳米颗粒的微观形貌和结构(a) MOF-5粉末;(b) MOF-5纳米颗粒SEM图;(c) MOF-5的FTIR光谱;(d) MOF-5的XRD衍射图谱

    Figure  2.  Microscopic morphology and structure of MOF-5 nanoparticles (a) MOF-5 powder, (b) SEM image of MOF-5 nanoparticles, (c) FTIR spectrum of MOF-5, (d) XRD diffraction pattern of MOF-5

    图  3  PLA/MOF纳纤膜的微观形貌 (a) Pure PLA;(b) PLA/MOF2;(c) PLA/MOF4;(d) PLA/MOF8

    Figure  3.  Microscopic morphology of PLA/MOF nanofiber membranes (a) Pure PLA, (b) PLA/MOF2, (c) PLA/MOF4, (d) PLA/MOF8

    图  4  PLA/MOF纳纤膜纤维直径分布(a) Pure PLA;(b) PLA/MOF2;(c) PLA/MOF4;(d) PLA/MOF8

    Figure  4.  PLA/MOF nanofiber membrane fiber diameter distribution (a) Pure PLA, (b) PLA/MOF2, (c) PLA/MOF4, (d) PLA/MOF8

    图  5  PLA/MOF纳纤膜微观结构(a) PLA/MOF纳纤膜的XRD衍射图谱;(b) PLA/MOF纳纤膜的FTIR光谱

    Figure  5.  Microstructure of PLA/MOF nanofiber membrane (a) XRD diffraction pattern of PLA/MOF nanofiber membrane, (b) FTIR spectra of PLA/MOF nanofiber membranes

    图  6  PLA/MOF纳纤膜的电活性测试(a)表面电势;(b)介电常数;(c)正常湿度下(RH=30%)摩擦电电压;(d)高湿度下(RH=90%)摩擦电电压

    Figure  6.  Electroactivity testing of PLA/MOF nanofiber membranes (a) Surface potential, (b) Dielectric constant, (c) Friction electric voltage at normal humidity (RH=30%), (d) Friction electric voltage at high humidity (RH=90%)

    图  7  PLA/MOF纳纤膜的过滤性能测试。气体流速为(a) 10 L/min、(b) 32 L/min、(c) 65 L/min、(d) 85 L/min时的过滤效率;在气体流速为85 L/min时(e)品质因子、(f)已报道不同纳纤膜的过滤效率、(g)不同湿度下的过滤效率、(h)高湿度时长效过滤效率测试

    Figure  7.  Filtration performance test of PLA/MOF nanofiber membrane. Filtration efficiency at gas flow rates of (a) 10 L/min, (b) 32 L/min, (c) 65 L/min, and (d) 85 L/min; at a gas flow rate of 85 L/min (e) Quality factor, (f) Reported filtration efficiencies of different nanofiber membranes, (g) Filtration efficiencies at different humidities, and (h) Long-lasting filtration efficiency test at high humidity

    图  8  PLA/MOF纳纤膜的过滤机制

    Figure  8.  Filtration mechanisms of PLA/MOF nanofibrous membranes

    图  9  PLA/MOF纳纤膜的力学性能(a)应力-应变曲线;(b)拉伸强度与最大拉伸力延展率;(c)杨氏模量与断裂伸长率

    Figure  9.  Mechanical properties of PLA/MOF nanofiber film (a) Stress-strain curve, (b) Tensile strength and maximum tensile force elongation,(c) Young's modulus and Breaking Elongation

  • [1] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.

    WU Y P, ZHAO W, CHEN F J. Experimental study on air filtration performance of nanofiber membrane with hydrophilic and hydrophobic function at different relative humidity[J]. CIESC Journal, 2020, 71(S1): 471-478 (in Chinese).
    [2] 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. doi: 10.11949/0438-1157.20230013

    WU Y P, LI X Y, ZHONG Q Y. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles[J]. CIESC Journal, 2023, 74(S1): 259-264 (in Chinese). doi: 10.11949/0438-1157.20230013
    [3] 李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3195-3207.

    LI F, JIANG L, LI X P, et al. Ecofriendly and antibacterial poly (lactic acid) nanofibrous membranes forhigh-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3195-3207 (in Chinese).
    [4] GAO Z, XIAO X, CARLO A D, et al. Advances in wearable strain sensors based on electrospun fibers[J]. Advanced Functional Materials, 2023, 33(18): 2214265. doi: 10.1002/adfm.202214265
    [5] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [6] SHI S, SI Y, HAN Y, et al. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications[J]. Advanced Materials, 2022, 34(17): 2107938. doi: 10.1002/adma.202107938
    [7] XU Y, ZHANG X, TENG D, et al. Multi-layered micro/nanofibrous nonwovens for functional face mask filter[J]. Nano Research, 2022, 15(8): 7549-7558. doi: 10.1007/s12274-022-4350-2
    [8] ZHOU W, WU T, LI Y, et al. A bioinspired vine-like hierarchically structured pet/ca composite nanofibrous membrane with superhydrophobic and superoleophilic surface for high-efficiency cooking fumes capture[J]. Separation and Purification Technology, 2024, 334: 125517. doi: 10.1016/j.seppur.2023.125517
    [9] HAN W, RAO D, GAO H, et al. Green-solvent-processable biodegradable poly (lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “kill two birds with one stone”[J]. Nano Energy, 2022, 97: 107237. doi: 10.1016/j.nanoen.2022.107237
    [10] YANG Z, ZHEN Y, FENG Y, et al. Polyacrylonitrile@TiO2 nanofibrous membrane decorated by mof for efficient filtration and green degradation of PM2.5[J]. Journal of Colloid and Interface Science, 2023, 635: 598-610. doi: 10.1016/j.jcis.2022.12.122
    [11] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16.

    SONG X Y, TANG M K, WANG C M, et al. Preparation of Stereocomplexed PLA Nanofibrous Membranes with High PM2.5 Filtration Efficiency[J]. Chem. J. Chinese Universities, 2024, 45(2): 9-16 (in Chinese).
    [12] 文美玲, 高翔, 刘阳, 等. 静电纺纳米纤维表面形貌的制备及其生物医学应用[J]. 复合材料学报, 2024, 41(5): 2246-2258.

    WEN M L, GAO X, LIU Y, et al. Preparation of surface morphology of electrospun nanofibers and their biomedical applications[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2246-2258 (in Chinese).
    [13] LIANG C, LI J, CHEN Y, et al. Self-charging, breathable, and antibacterial poly (lactic acid) nanofibrous air filters by surface engineering of ultrasmall electroactive nanohybrids[J]. ACS Applied Materials & Interfaces, 2023, 15(49): 57636-57648.
    [14] CAI G, YAN P, ZHANG L, et al. Metal–organic framework-based hierarchically porous materials: synthesis and applications[J]. Chemical Reviews, 2021, 121(20): 12278-12326. doi: 10.1021/acs.chemrev.1c00243
    [15] ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. doi: 10.1126/science.1083440
    [16] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. doi: 10.1126/science.1067208
    [17] LEE J, FARHA O K, ROBERTS J, et al. Metal–organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459. doi: 10.1039/b807080f
    [18] KE L, YANG T, LIANG C, et al. Electroactive, antibacterial, and biodegradable poly (lactic acid) nanofibrous air filters for healthcare[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 32463-32474.
    [19] JIANG H, XU M, LENG C, et al. Bifunctional MOF-5@Coal-based fiber membrane for oil-water separation and dye adsorption[J]. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 2024, 683: 133021. doi: 10.1016/j.colsurfa.2023.133021
    [20] LI L, LV X, JIN L, et al. Facile synthesis of sn-doped MOF-5 catalysts for efficient photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2024, 344: 123586. doi: 10.1016/j.apcatb.2023.123586
    [21] PENG Z, SHI J, XIAO X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nature Communications, 2022, 13(1): 7835. doi: 10.1038/s41467-022-35521-w
    [22] ZHU Q, TANG X, FENG S, et al. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control[J]. Journal of Membrane Science, 2019, 581: 252-261. doi: 10.1016/j.memsci.2019.03.075
    [23] SHANG H, XU K, LI T, et al. Bioelectret poly (lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne PM0.3[J]. Journal of Hazardous Materials, 2023, 458: 132010. doi: 10.1016/j.jhazmat.2023.132010
    [24] 高涵超, 张苏广, 夏兆鹏, 等. 空气过滤用驻极体纤维材料研究进展[J]. 高分子材料科学与工程, 2023, 39(4): 173-181.

    CHAO G H, ZHANG S G, XIA Z P, et al. Progress of research on electret fiber materials for air filtration[J]. Polymer Materials Science & Engineering, 2023, 39(4): 173-181 (in Chinese).
    [25] TANG M, JIANG L, WANG C, et al. Bioelectrets in electrospun bimodal poly (lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine pms[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931.
    [26] ZHU G, LI X, LI X, et al. Nanopatterned electroactive polylactic acid nanofibrous mofilters for efficient PM0.3 filtration and bacterial inhibition[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 47145-47157.
    [27] BARTHWAL S, JEON Y, LIM S. Superhydrophobic sponge decorated with hydrophobic MOF-5 nanocoating for efficient oil-water separation and antibacterial applications[J]. Sustainable Materials and Technologies, 2022, 33: e00492. doi: 10.1016/j.susmat.2022.e00492
    [28] GAO H, LIU G, GUAN J, et al. Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal[J]. Chemical Engineering Journal, 2023, 458: 141412. doi: 10.1016/j.cej.2023.141412
    [29] RAHMAN M T, RANA S S, ZAHED M A, et al. Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors[J]. Nano Energy, 2022, 94: 106921. doi: 10.1016/j.nanoen.2022.106921
    [30] GUO Y, YANG D, LI B, et al. Effect of dispersion solvents and ionomers on the rheology of catalyst inks and catalyst layer structure for proton exchange membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27119-27128.
    [31] YAN J, WANG H, ZENG J, et al. Carboxylated poly (p-phenylene terephthalamide) reinforced polyetherimide for high-temperature dielectric energy storage[J]. Small, 2023, 19(42): 2304310. doi: 10.1002/smll.202304310
    [32] CHEN Y, XU M, LI X, et al. Concurrently improved breakdown strength and storage energy capacitance in the core–shell-structured aromatic polythiourea@BaTiO3 polymer nanocomposites induced by the nature of interfacial polarization and crystallization[J]. ACS Applied Energy Materials, 2021, 4(1): 470-481. doi: 10.1021/acsaem.0c02396
    [33] 黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024, 45(1): 162-171.

    HUANG R T, ZHU G Y, LI X Y, et al. Morphological Manipulation of Highly Electroactive Poly(lactic acid) Nanofibrous Membranes for Efficient Removal of Airborne PM0.3[J]. Chem. J. Chinese Universities, 2024, 45(1): 162-171 (in Chinese).
    [34] YANG T, ZHU X, ZHANG Y, et al. Nanopatterning of beaded poly (lactic acid) nanofibers for highly electroactive, breathable, uv-shielding and antibacterial protective membranes[J]. International Journal of Biological Macromolecules, 2024, 260: 129566. doi: 10.1016/j.ijbiomac.2024.129566
    [35] WANG C, SONG X, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.
    [36] LI X, ZHU G, TANG M, et al. Biodegradable mofilters for effective air filtration and sterilization by coupling mof functionalization and mechanical polarization of fibrous poly (lactic acid)[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26812-26823.
    [37] LIU H, ZHANG S, LIU L, et al. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration[J]. Advanced Functional Materials, 2019, 29(39): 1904108. doi: 10.1002/adfm.201904108
    [38] ZONG D, ZHANG X, YIN X, et al. Electrospun fibrous sponges: principle, fabrication, and applications[J]. Advanced Fiber Materials, 2022, 4(6): 1434-1462. doi: 10.1007/s42765-022-00202-2
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2024-06-03
  • 录用日期:  2024-06-08
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回