留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花状聚酰亚胺/聚酰亚胺及其热重排混合基质膜的制备及其性能

蔺家弘 肖国勇 鲁云华 侯蒙杰 李琳 王同华

蔺家弘, 肖国勇, 鲁云华, 等. 花状聚酰亚胺/聚酰亚胺及其热重排混合基质膜的制备及其性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 蔺家弘, 肖国勇, 鲁云华, 等. 花状聚酰亚胺/聚酰亚胺及其热重排混合基质膜的制备及其性能[J]. 复合材料学报, 2024, 42(0): 1-10.
LIN Jiahong, XIAO GuoYong, LU Yunhua, et al. Preparation and properties of flower-like polyimide/polyimide and thermally rearranged mixed matrix membranes[J]. Acta Materiae Compositae Sinica.
Citation: LIN Jiahong, XIAO GuoYong, LU Yunhua, et al. Preparation and properties of flower-like polyimide/polyimide and thermally rearranged mixed matrix membranes[J]. Acta Materiae Compositae Sinica.

花状聚酰亚胺/聚酰亚胺及其热重排混合基质膜的制备及其性能

基金项目: 国家自然科学基金 (No: 22278051, 21878033)
详细信息
    通讯作者:

    肖国勇,博士,副教授,硕士生导师,研究方向为有机功能材料 E-mail:xiao_guoyong@163.com

    鲁云华,博士,教授,硕士生/博士生导师,研究方向为功能性聚酰亚胺膜材料 E-mail:lee.lyh@163.com

  • 中图分类号: TQ323.7;TB332

Preparation and properties of flower-like polyimide/polyimide and thermally rearranged mixed matrix membranes

Funds: National Natural Science Foundation of China (No. 22278051, 21878033)
  • 摘要: 混合基质膜(MMMs)由于制备方法简单,综合性能优异,在气体分离领域具有较强的竞争力。为提高填料与聚合物基体间的相容性,本文采用溶剂热法制备的花状聚酰亚胺(PI)为填料,以含羟基聚酰亚胺为基体,采用原位聚合法,经热酰亚胺化和热重排反应制备出了一系列花状聚酰亚胺/聚酰亚胺及其热重排(TR)混合基质膜。化学结构相似的聚酰亚胺填料和基体间形成了良好的界面相容性,赋予混合基质膜较为优异的气体分离性能。当花状PI的掺杂量为3wt%时,混合基质膜TR-3wt%的晶面间距达到0.64 nm,对H2、CO2、O2、CH4和N2的气体渗透率相对于TR膜分别提高了61.36%、67.90%、81.58%、37.88%和51.72%,且O2/N2的选择性为5.49,接近2015年上限;CO2/CH4的选择性为22.36,超过2008年Robeson上限。因此,该策略将为高性能MMMs的界面设计工程提供一定参考。

     

  • 图  1  (a) 混合基质膜的制备流程;(b) 热转化历程;(c) 气体渗透测试装置

    Figure  1.  (a) Preparation process of MMMs; (b) Thermal conversion process; (c) Gas permeability test unit

    图  2  红外光谱图 (a) 花状PI(6FAP-PMDA)和HPI(6FAP-6FDA)混合基质膜;(b) 热重排的花状PI(6FAP-PMDA)和TR混合基质膜

    Figure  2.  FTIR spectra (a) Flower-like PI(6FAP-PMDA) and HPI(6FAP-6FDA) MMMs; (b) Rearranged flower-like PI(6FAP-PMDA) and TR MMMs

    图  3  (a) HPI混合基质膜的表观照片;SEM图:(b) 花状PI(6FAP-PMDA)颗粒;(c) HPI(6FAP-6FDA), ×10 k;(d) HPI-1wt%, ×10 k;(e) HPI-5wt%, ×10 k;(f) HPI-10wt%, ×10 k; (g) HPI-10wt%, ×1 k

    Figure  3.  (a) Digital photos of HPI MMMs; SEM images: (b) Flower-like PI(6FAP-PMDA) particles; (c) HPI(6FAP-6FDA), ×10 k; (d) HPI-1wt%, ×10 k; (e) HPI-5wt%, ×10 k; (f) HPI-10wt%, ×10 k; (g) HPI-10wt%, ×1 k

    图  4  应力-应变曲线 (a) HPI混合基质膜;(b) TR混合基质膜;(c) 不同热重排温度制得的混合基质膜

    Figure  4.  Stress-strain curves (a) HPI MMMs; (b) TR MMMs; (c) MMMs obtained from different TR temperatures

    图  5  HPI混合基质膜的TGA和DTG曲线

    Figure  5.  TGA and DTG curves of HPI MMMs

    图  6  HPI混合基质膜的Tanδ-T曲线

    Figure  6.  Tanδ-T curves of HPI MMMs

    图  7  TR混合基质膜的XRD曲线

    Figure  7.  XRD patterns of TR MMMs

    图  8  TR混合基质膜的气体分离性能 (a) O2/N2对O2渗透率;(b) CO2/CH4对CO2渗透率

    Figure  8.  Gas separation performance of TR MMMs (a) O2/N2 vs. O2 permeability, (b) CO2/CH4 vs. CO2 permeability

    表  1  TR混合基质膜的气体分离性能

    Table  1.   Gas separation performance of TR MMMs

    Samples Gas permeabilitya/(10−14 mol·m−1·s−1·Pa−1) Ideal selectivityb
    H2 CO2 O2 CH4 N2 CO2/N2 O2/N2 CO2/CH4 H2/N2
    TR 44.2 40.6 8.9 2.2 1.9 20.90 4.59 18.36 22.76
    TR-0.25wt% 49.2 45.5 10.2 2.6 2.2 20.58 4.62 17.41 22.26
    TR-0.5wt% 55.8 52.1 11.7 2.8 2.4 21.30 4.78 18.51 22.84
    TR-1wt% 63.6 59.5 13.3 2.9 2.7 21.66 4.84 20.18 23.15
    TR-3wt% 71.4 68.2 16.2 3.0 2.9 23.13 5.49 22.36 24.20
    TR-5wt% 57.3 55.3 12.5 2.6 2.6 21.91 4.71 20.91 21.63
    TR-10wt% 51.5 47.5 9.9 2.4 2.3 20.85 4.34 19.42 22.63
    Note: a The experimental conditions were 30°C and the constant pressure was 0.01 MPa (0.1 atm), b Ideal selectivity is obtained by the ratio of the permeability of the two gases.
    下载: 导出CSV
  • [1] SEMENOV S M. Greenhouse Effect and Modern Climate[J]. Russian Meteorology and Hydrology, 2022, 47(10): 725-734. doi: 10.3103/S1068373922100016
    [2] LUQUE-ALLED J M, MORENO C, GORGOJO P. Two-dimensional materials for gas separation membranes[J]. Current Opinion in Chemical Engineering, 2023, 39: 100901. doi: 10.1016/j.coche.2023.100901
    [3] LEE W H, SEONG J G, HU X, et al. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines[J]. Journal of Polymer Science, 2020, 58(18): 2450-2466. doi: 10.1002/pol.20200110
    [4] 丁黎明, 张新妙, 王玉杰, 等. 聚酰亚胺膜材料在CO2分离领域的应用研究进展[J]. 石油化工, 2022, 51(8): 993-1002. doi: 10.3969/j.issn.1000-8144.2022.08.020

    DING L M, ZHANG X M, WANG Y J, et al. Research progress on the application of polyimide membrane materials in the field of CO2 separation[J]. Petrochemical Technology, 2022, 51(8): 993-1002(in Chinese). doi: 10.3969/j.issn.1000-8144.2022.08.020
    [5] AYKAC OZEN H, OZTURK B. Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals[J]. Separation and Purification Technology, 2019, 211: 514-521. doi: 10.1016/j.seppur.2018.09.052
    [6] AYDIN S, ALTINTAS C, KESKIN S. High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21738-21749.
    [7] MOHAMED A, YOUSEF S, TONKONOGOVAS A, et al. High performance of PES-GNs MMMs for gas separation and selectivity[J]. Arabian Journal of Chemistry, 2022, 15(2): 103565. doi: 10.1016/j.arabjc.2021.103565
    [8] CUI X, ZHENG R-R, WANG J-Y, et al. Preparation and properties of mesoporous SiO2/polyimide composite films[J]. Polymer Composites, 2024, 45(3): 2189-2201. doi: 10.1002/pc.27912
    [9] ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1): 390-400.
    [10] SCHAUMüLLER S, CRISTUREAN D, HAUDUM S, et al. Post-polymerization modification of aromatic polyimides via Diels-Alder cycloaddition[J]. Journal of Polymer Science, 2021, 59(24): 3161-3166. doi: 10.1002/pol.20210711
    [11] YAN X, DAI F, KE Z, et al. Synthesis of colorless polyimides with high Tg from asymmetric twisted benzimidazole diamines[J]. European Polymer Journal, 2022, 164: 110975. doi: 10.1016/j.eurpolymj.2021.110975
    [12] YUAN X, YU H, XU S, et al. Performance optimization of imidazole containing copolyimide/functionalized ZIF-8 mixed matrix membrane for gas separations[J]. Journal of Membrane Science, 2022, 644: 120071. doi: 10.1016/j.memsci.2021.120071
    [13] ÁLVAREZ C, LOZANO Á E, JUAN-Y-SEVA M, et al. Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results[J]. Journal of Membrane Science, 2020, 602: 117959. doi: 10.1016/j.memsci.2020.117959
    [14] ZHOU X, TIAN H, LING H, et al. Thermally rearranged OH-containing polyimide composite membranes with enhanced gas separation performance and physical aging resistance[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112275. doi: 10.1016/j.jece.2024.112275
    [15] ZHANG J, SUN Y, FAN F, et al. Enhanced mechanical robustness and separation performance in triptycene modulated thermally rearranged copolyimide membranes[J]. Journal of Membrane Science, 2023, 688: 122115. doi: 10.1016/j.memsci.2023.122115
    [16] MEIS D, NEUMANN S, FILIZ V. Thermal rearrangement in thermal cascade reaction polymers via ortho-carbonate ester functionalization of polyimides and their gas separation performance[J]. Journal of Membrane Science, 2022, 655: 120586. doi: 10.1016/j.memsci.2022.120586
    [17] GAN F, DONG J, ZHENG S, et al. Constructing Gas Molecule Transport Channels in Thermally Rearranged Multiblock Poly(benzoxazole-co-imide) Membranes for Effective CO2/CH4 Separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669-9679.
    [18] LUO S, LIU J, LIN H, et al. Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes[J]. Journal of Materials Chemistry, A Materials for energy and sustainability, 2016, 4(43): 17050-17062.
    [19] SWAIDAN R J, MA X, PINNAU I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation[J]. Journal of Membrane Science, 2016, 520: 983-989. doi: 10.1016/j.memsci.2016.08.057
    [20] GAN F, DONG J, XU X, et al. Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation[J]. Polymer, 2019, 185: 121945. doi: 10.1016/j.polymer.2019.121945
    [21] PATEL H D, ACHARYA N K. Synthesis and characteristics of HAB-6FDA thermally rearranged polyimide nanocomposite membranes[J]. Polymer Engineering & Science, 2021, 61(11): 2782-2791.
    [22] VATANKHAH G, AMINSHAHIDY B. Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation[J]. 2021, 41(8): 627-636.
    [23] MOHAMED A, YOUSEF S, MAKAREVICIUS V, et al. GNs/MOF-based mixed matrix membranes for gas separations[J]. International Journal of Hydrogen Energy, 2023, 48(51): 19596-19604. doi: 10.1016/j.ijhydene.2023.02.074
    [24] ZHANG Q, LI S, WANG C, et al. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance[J]. Journal of Membrane Science, 2020, 598: 117794. doi: 10.1016/j.memsci.2019.117794
    [25] ILICAK I, BOROGLU M S, DURMUS A, et al. Influence of ZIF-95 on structure and gas separation properties of polyimide-based mixed matrix membranes[J]. Journal of Natural Gas Science and Engineering, 2021, 91: 103941. doi: 10.1016/j.jngse.2021.103941
    [26] WINARTA J, MESHRAM A, ZHU F, et al. Metal–organic framework-based mixed-matrix membranes for gas separation: An overview[J]. Journal of Polymer Science, 2020, 58(18): 2518-2546. doi: 10.1002/pol.20200122
    [27] LAI S F, TAN P C. Polyimide blend metal–organic framework-based mixed matrix membrane for gas separation: A review[J]. Asia-Pacific Journal of Chemical Engineering, 2024, 19(1): e2970. doi: 10.1002/apj.2970
    [28] WANG Z, TIAN Y, FANG W, et al. Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3166-3174.
    [29] QIN Z, MA Y, WEI J, et al. Recent progress in ternary mixed matrix membranes for CO2 separation[J]. Green Energy & Environment, 2024, 9(5): 831-858.
    [30] CHENG Y, ZHAI L, YING Y, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7(9): 4549-4560. doi: 10.1039/C8TA10333J
    [31] WANG Y, LU Y, ZHANG J, et al. Enhanced toughness and gas permeabilities of polyimide composites derived from polyimide matrix and flower-like polyimide microparticles[J]. Polymer Composites, 2021, 42(8): 3870-3881. doi: 10.1002/pc.26099
    [32] WANG Y, LU Y, HU Z, et al. Facile Preparation and Boosted Electrochemical Properties of Carbon/Carbon Composite Electrodes for Supercapacitors[J]. Energy Technology, 2023, 11(7): 2300027. doi: 10.1002/ente.202300027
    [33] 薛佳佳. 原位制备MOFs/PI混合基质膜及其气体分离性能研究 [D], 2020.

    XUE J J. Preparation of MOFs/PI Mixed Matrix Membranes in Situ and Gas Separation [D], 2020(in Chinese).
    [34] 姜宗岭. 含萘结构二胺单体的合成及其在聚酰亚胺中的应用 [D], 2023.

    JIANG Z L. Synthesis of Diamine Monomers Containing Naphthalene Structure and Their Application in Polyimide [D]. 2023(in Chinese).
    [35] DU P, WANG Z, ZHANG T, et al. Crosslinked thermally rearranged polybenzoxazole derived from phenolphthalein-based polyimide for gas separation[J]. Journal of Membrane Science, 2022, 662: 120934. doi: 10.1016/j.memsci.2022.120934
    [36] YERZHANKYZY A, WANG Y, XU F, et al. Structural evolution and gas separation properties of thermally rearranged polybenzoxazole (TR-PBO), polymer-carbon transition (PCT) and early-stage carbon (ESC) membranes derived from a 6FDA-hydroxyl-functionalized Tröger's base polyimide[J]. Journal of Membrane Science, 2023, 683: 121764. doi: 10.1016/j.memsci.2023.121764
    [37] NOCOŃ-SZMAJDA K, WOLIŃSKA-GRABCZYK A, JANKOWSKI A, et al. Effects of ionic liquid doping on gas transport properties of thermally rearranged poly(hydroxyimide)s[J]. Separation and Purification Technology, 2021, 254: 117664. doi: 10.1016/j.seppur.2020.117664
    [38] AGUILAR-LUGO C, ÁLVAREZ C, LEE Y M, et al. Thermally Rearranged Polybenzoxazoles Containing Bulky Adamantyl Groups from Ortho-Substituted Precursor Copolyimides[J]. Macromolecules, 2018, 51(5): 1605-1619. doi: 10.1021/acs.macromol.7b02460
    [39] GUZMAN W, JOHNSON I, WIGGINS J S. Thermal Rearrangement Conversion of Cross-Linked ortho-Hydroxy Polyimide Networks[J]. ACS Applied Polymer Materials, 2022, 4(10): 7135-7143. doi: 10.1021/acsapm.2c01031
    [40] MAIJUN L, ZHIBO Z, ZHIGUANG Z, et al. “All Polyimide” Mixed Matrix Membranes for High Performance Gas Separation[J]. Polymers, 2021, 13(8): 1329-1329. doi: 10.3390/polym13081329
    [41] SWAIDAN R, GHANEM B, PINNAU I. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations[J]. ACS Macro Letters, 2015, 4(9): 947-951. doi: 10.1021/acsmacrolett.5b00512
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-04-30
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回