Preparation and properties of flower-like polyimide/polyimide and thermally rearranged mixed matrix membranes
-
摘要: 混合基质膜(MMMs)由于制备方法简单,综合性能优异,在气体分离领域具有较强的竞争力。为提高填料与聚合物基体间的相容性,本文采用溶剂热法制备的花状聚酰亚胺(PI)为填料,以含羟基聚酰亚胺为基体,采用原位聚合法,经热酰亚胺化和热重排反应制备出了一系列花状聚酰亚胺/聚酰亚胺及其热重排(TR)混合基质膜。化学结构相似的聚酰亚胺填料和基体间形成了良好的界面相容性,赋予混合基质膜较为优异的气体分离性能。当花状PI的掺杂量为3wt%时,混合基质膜TR-3wt%的晶面间距达到0.64 nm,对H2、CO2、O2、CH4和N2的气体渗透率相对于TR膜分别提高了61.36%、67.90%、81.58%、37.88%和51.72%,且O2/N2的选择性为5.49,接近2015年上限;CO2/CH4的选择性为22.36,超过2008年Robeson上限。因此,该策略将为高性能MMMs的界面设计工程提供一定参考。Abstract: Mixed matrix membranes (MMMs) show strong competitiveness in the field of gas separation due to their simple preparation method and excellent comprehensive performance. In order to improve the compatibility between fillers and polymer matrix, a series of flower-like polyimide(PI)/polyimide and their thermally rearranged (TR) mixed matrix membranes were prepared by in situ polymerization method, using the flower-like polyimide synthesized from solvothermal method as fillers and the hydroxyl-containing polyimide as matrix, followed by thermal imidization and thermal rearrangement treatment. Because the polyimide filler and matrix can form better compatibility because of their similar chemical structures, the mixed matrix membranes showed superior gas separation performance. When the doping content of the flower-like PI particles was 3wt%, the mixed matrix membrane TR-3wt% exhibited a d-spacing value of 0.64 nm, and the gas permeabilities of H2, CO2, O2, CH4 and N2 were respectively increased by 61.36%, 67.90%, 81.58%, 37.88%, and 51.72% compared to the TR membrane. Moreover, the ideal selectivity of O2/N2 was 5.49, close to the 2015 Upper Limit. The selectivity of CO2/CH4 reached 22.36, exceeding the 2008 Robeson Upper Limit. Therefore, this design strategy will provide a certain reference for the interface design of MMMs.
-
Key words:
- Mixed matrix membrane /
- Flower-like polyimide /
- Thermal rearrangement /
- Gas separation /
- Interface
-
图 3 (a) HPI混合基质膜的表观照片;SEM图:(b) 花状PI(6FAP-PMDA)颗粒;(c) HPI(6FAP-6FDA), ×10 k;(d) HPI-1wt%, ×10 k;(e) HPI-5wt%, ×10 k;(f) HPI-10wt%, ×10 k; (g) HPI-10wt%, ×1 k
Figure 3. (a) Digital photos of HPI MMMs; SEM images: (b) Flower-like PI(6FAP-PMDA) particles; (c) HPI(6FAP-6FDA), ×10 k; (d) HPI-1wt%, ×10 k; (e) HPI-5wt%, ×10 k; (f) HPI-10wt%, ×10 k; (g) HPI-10wt%, ×1 k
表 1 TR混合基质膜的气体分离性能
Table 1. Gas separation performance of TR MMMs
Samples Gas permeabilitya/(10−14 mol·m−1·s−1·Pa−1) Ideal selectivityb H2 CO2 O2 CH4 N2 CO2/N2 O2/N2 CO2/CH4 H2/N2 TR 44.2 40.6 8.9 2.2 1.9 20.90 4.59 18.36 22.76 TR-0.25wt% 49.2 45.5 10.2 2.6 2.2 20.58 4.62 17.41 22.26 TR-0.5wt% 55.8 52.1 11.7 2.8 2.4 21.30 4.78 18.51 22.84 TR-1wt% 63.6 59.5 13.3 2.9 2.7 21.66 4.84 20.18 23.15 TR-3wt% 71.4 68.2 16.2 3.0 2.9 23.13 5.49 22.36 24.20 TR-5wt% 57.3 55.3 12.5 2.6 2.6 21.91 4.71 20.91 21.63 TR-10wt% 51.5 47.5 9.9 2.4 2.3 20.85 4.34 19.42 22.63 Note: a The experimental conditions were 30°C and the constant pressure was 0.01 MPa (0.1 atm), b Ideal selectivity is obtained by the ratio of the permeability of the two gases. -
[1] SEMENOV S M. Greenhouse Effect and Modern Climate[J]. Russian Meteorology and Hydrology, 2022, 47(10): 725-734. doi: 10.3103/S1068373922100016 [2] LUQUE-ALLED J M, MORENO C, GORGOJO P. Two-dimensional materials for gas separation membranes[J]. Current Opinion in Chemical Engineering, 2023, 39: 100901. doi: 10.1016/j.coche.2023.100901 [3] LEE W H, SEONG J G, HU X, et al. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines[J]. Journal of Polymer Science, 2020, 58(18): 2450-2466. doi: 10.1002/pol.20200110 [4] 丁黎明, 张新妙, 王玉杰, 等. 聚酰亚胺膜材料在CO2分离领域的应用研究进展[J]. 石油化工, 2022, 51(8): 993-1002. doi: 10.3969/j.issn.1000-8144.2022.08.020DING L M, ZHANG X M, WANG Y J, et al. Research progress on the application of polyimide membrane materials in the field of CO2 separation[J]. Petrochemical Technology, 2022, 51(8): 993-1002(in Chinese). doi: 10.3969/j.issn.1000-8144.2022.08.020 [5] AYKAC OZEN H, OZTURK B. Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals[J]. Separation and Purification Technology, 2019, 211: 514-521. doi: 10.1016/j.seppur.2018.09.052 [6] AYDIN S, ALTINTAS C, KESKIN S. High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21738-21749. [7] MOHAMED A, YOUSEF S, TONKONOGOVAS A, et al. High performance of PES-GNs MMMs for gas separation and selectivity[J]. Arabian Journal of Chemistry, 2022, 15(2): 103565. doi: 10.1016/j.arabjc.2021.103565 [8] CUI X, ZHENG R-R, WANG J-Y, et al. Preparation and properties of mesoporous SiO2/polyimide composite films[J]. Polymer Composites, 2024, 45(3): 2189-2201. doi: 10.1002/pc.27912 [9] ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1): 390-400. [10] SCHAUMüLLER S, CRISTUREAN D, HAUDUM S, et al. Post-polymerization modification of aromatic polyimides via Diels-Alder cycloaddition[J]. Journal of Polymer Science, 2021, 59(24): 3161-3166. doi: 10.1002/pol.20210711 [11] YAN X, DAI F, KE Z, et al. Synthesis of colorless polyimides with high Tg from asymmetric twisted benzimidazole diamines[J]. European Polymer Journal, 2022, 164: 110975. doi: 10.1016/j.eurpolymj.2021.110975 [12] YUAN X, YU H, XU S, et al. Performance optimization of imidazole containing copolyimide/functionalized ZIF-8 mixed matrix membrane for gas separations[J]. Journal of Membrane Science, 2022, 644: 120071. doi: 10.1016/j.memsci.2021.120071 [13] ÁLVAREZ C, LOZANO Á E, JUAN-Y-SEVA M, et al. Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results[J]. Journal of Membrane Science, 2020, 602: 117959. doi: 10.1016/j.memsci.2020.117959 [14] ZHOU X, TIAN H, LING H, et al. Thermally rearranged OH-containing polyimide composite membranes with enhanced gas separation performance and physical aging resistance[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112275. doi: 10.1016/j.jece.2024.112275 [15] ZHANG J, SUN Y, FAN F, et al. Enhanced mechanical robustness and separation performance in triptycene modulated thermally rearranged copolyimide membranes[J]. Journal of Membrane Science, 2023, 688: 122115. doi: 10.1016/j.memsci.2023.122115 [16] MEIS D, NEUMANN S, FILIZ V. Thermal rearrangement in thermal cascade reaction polymers via ortho-carbonate ester functionalization of polyimides and their gas separation performance[J]. Journal of Membrane Science, 2022, 655: 120586. doi: 10.1016/j.memsci.2022.120586 [17] GAN F, DONG J, ZHENG S, et al. Constructing Gas Molecule Transport Channels in Thermally Rearranged Multiblock Poly(benzoxazole-co-imide) Membranes for Effective CO2/CH4 Separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669-9679. [18] LUO S, LIU J, LIN H, et al. Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes[J]. Journal of Materials Chemistry, A Materials for energy and sustainability, 2016, 4(43): 17050-17062. [19] SWAIDAN R J, MA X, PINNAU I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation[J]. Journal of Membrane Science, 2016, 520: 983-989. doi: 10.1016/j.memsci.2016.08.057 [20] GAN F, DONG J, XU X, et al. Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation[J]. Polymer, 2019, 185: 121945. doi: 10.1016/j.polymer.2019.121945 [21] PATEL H D, ACHARYA N K. Synthesis and characteristics of HAB-6FDA thermally rearranged polyimide nanocomposite membranes[J]. Polymer Engineering & Science, 2021, 61(11): 2782-2791. [22] VATANKHAH G, AMINSHAHIDY B. Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation[J]. 2021, 41(8): 627-636. [23] MOHAMED A, YOUSEF S, MAKAREVICIUS V, et al. GNs/MOF-based mixed matrix membranes for gas separations[J]. International Journal of Hydrogen Energy, 2023, 48(51): 19596-19604. doi: 10.1016/j.ijhydene.2023.02.074 [24] ZHANG Q, LI S, WANG C, et al. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance[J]. Journal of Membrane Science, 2020, 598: 117794. doi: 10.1016/j.memsci.2019.117794 [25] ILICAK I, BOROGLU M S, DURMUS A, et al. Influence of ZIF-95 on structure and gas separation properties of polyimide-based mixed matrix membranes[J]. Journal of Natural Gas Science and Engineering, 2021, 91: 103941. doi: 10.1016/j.jngse.2021.103941 [26] WINARTA J, MESHRAM A, ZHU F, et al. Metal–organic framework-based mixed-matrix membranes for gas separation: An overview[J]. Journal of Polymer Science, 2020, 58(18): 2518-2546. doi: 10.1002/pol.20200122 [27] LAI S F, TAN P C. Polyimide blend metal–organic framework-based mixed matrix membrane for gas separation: A review[J]. Asia-Pacific Journal of Chemical Engineering, 2024, 19(1): e2970. doi: 10.1002/apj.2970 [28] WANG Z, TIAN Y, FANG W, et al. Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3166-3174. [29] QIN Z, MA Y, WEI J, et al. Recent progress in ternary mixed matrix membranes for CO2 separation[J]. Green Energy & Environment, 2024, 9(5): 831-858. [30] CHENG Y, ZHAI L, YING Y, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7(9): 4549-4560. doi: 10.1039/C8TA10333J [31] WANG Y, LU Y, ZHANG J, et al. Enhanced toughness and gas permeabilities of polyimide composites derived from polyimide matrix and flower-like polyimide microparticles[J]. Polymer Composites, 2021, 42(8): 3870-3881. doi: 10.1002/pc.26099 [32] WANG Y, LU Y, HU Z, et al. Facile Preparation and Boosted Electrochemical Properties of Carbon/Carbon Composite Electrodes for Supercapacitors[J]. Energy Technology, 2023, 11(7): 2300027. doi: 10.1002/ente.202300027 [33] 薛佳佳. 原位制备MOFs/PI混合基质膜及其气体分离性能研究 [D], 2020.XUE J J. Preparation of MOFs/PI Mixed Matrix Membranes in Situ and Gas Separation [D], 2020(in Chinese). [34] 姜宗岭. 含萘结构二胺单体的合成及其在聚酰亚胺中的应用 [D], 2023.JIANG Z L. Synthesis of Diamine Monomers Containing Naphthalene Structure and Their Application in Polyimide [D]. 2023(in Chinese). [35] DU P, WANG Z, ZHANG T, et al. Crosslinked thermally rearranged polybenzoxazole derived from phenolphthalein-based polyimide for gas separation[J]. Journal of Membrane Science, 2022, 662: 120934. doi: 10.1016/j.memsci.2022.120934 [36] YERZHANKYZY A, WANG Y, XU F, et al. Structural evolution and gas separation properties of thermally rearranged polybenzoxazole (TR-PBO), polymer-carbon transition (PCT) and early-stage carbon (ESC) membranes derived from a 6FDA-hydroxyl-functionalized Tröger's base polyimide[J]. Journal of Membrane Science, 2023, 683: 121764. doi: 10.1016/j.memsci.2023.121764 [37] NOCOŃ-SZMAJDA K, WOLIŃSKA-GRABCZYK A, JANKOWSKI A, et al. Effects of ionic liquid doping on gas transport properties of thermally rearranged poly(hydroxyimide)s[J]. Separation and Purification Technology, 2021, 254: 117664. doi: 10.1016/j.seppur.2020.117664 [38] AGUILAR-LUGO C, ÁLVAREZ C, LEE Y M, et al. Thermally Rearranged Polybenzoxazoles Containing Bulky Adamantyl Groups from Ortho-Substituted Precursor Copolyimides[J]. Macromolecules, 2018, 51(5): 1605-1619. doi: 10.1021/acs.macromol.7b02460 [39] GUZMAN W, JOHNSON I, WIGGINS J S. Thermal Rearrangement Conversion of Cross-Linked ortho-Hydroxy Polyimide Networks[J]. ACS Applied Polymer Materials, 2022, 4(10): 7135-7143. doi: 10.1021/acsapm.2c01031 [40] MAIJUN L, ZHIBO Z, ZHIGUANG Z, et al. “All Polyimide” Mixed Matrix Membranes for High Performance Gas Separation[J]. Polymers, 2021, 13(8): 1329-1329. doi: 10.3390/polym13081329 [41] SWAIDAN R, GHANEM B, PINNAU I. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations[J]. ACS Macro Letters, 2015, 4(9): 947-951. doi: 10.1021/acsmacrolett.5b00512
计量
- 文章访问数: 67
- HTML全文浏览量: 49
- 被引次数: 0