留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

cRP NRs/MIL-101-NH2复合材料的制备及其光催化降解四环素

朱靖雨 高志邦 王驰 李凯 梅毅

朱靖雨, 高志邦, 王驰, 等. cRP NRs/MIL-101-NH2复合材料的制备及其光催化降解四环素[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 朱靖雨, 高志邦, 王驰, 等. cRP NRs/MIL-101-NH2复合材料的制备及其光催化降解四环素[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHU JingYu, GAO ZhiBang, WANG Chi, et al. Preparation of cRP NRs/MIL-101-NH2 composites and photocatalytic degradation of tetracycline[J]. Acta Materiae Compositae Sinica.
Citation: ZHU JingYu, GAO ZhiBang, WANG Chi, et al. Preparation of cRP NRs/MIL-101-NH2 composites and photocatalytic degradation of tetracycline[J]. Acta Materiae Compositae Sinica.

cRP NRs/MIL-101-NH2复合材料的制备及其光催化降解四环素

基金项目: 国家自然科学基金 (52260013);云南省重大科技项目(202202AG050005);云南省磷资源技术创新中心资助(202305AK340002)
详细信息
    通讯作者:

    王驰,博士,教授,博士生导师,研究方向为纳米材料、环境净化以及能源光催化 E-mail: wangchikg@163.com

  • 中图分类号: TB333

Preparation of cRP NRs/MIL-101-NH2 composites and photocatalytic degradation of tetracycline

Funds: National Natural Science Foundation of China (No. 52260013); Key Science and Technology Project of Yunnan Province (202202AG050005); Supported by Innovation Center of Phosphorus Resource, Yunnan Province (NO. 202305AK340002)
  • 摘要: 晶态红磷纳米带(cRP NRs)是一种具有条带状结构的新型材料,其结构赋予了晶态红磷纳米带独特的物理和化学性质,使其在光催化领域具有广泛的应用前景。然而cRP NRs因其光生电子空穴复合较快和自由基产生种类单一等问题影响了其在光催化中的应用。为了提高cRP NRs的光催化降解效率,通过结合铁基MOF材料MIL-101-NH2具有高比表面积和孔隙率的优点,利用构造异质结的方法来对材料进行改性。本文采用溶剂热法成功将cRP NRs与MIL-101-NH2铁基金属有机框架材料复合。随后,对复合材料进行了SEM、TEM等表征,并通过元素分布扫描和XRD特征峰等分析,证实了cRP NRs与MIL-101-NH2材料的成功复合。在光催化降解四环素的对比实验中,cRP NRs/MIL-101-NH2表现出优异的降解效率,在光照90 min后降解了约80%。接着深入进行了XPS元素能谱分析、禁带宽度测量、Mott-Schottky曲线测定以及自由基捕获实验,确定了cRP NRs/MIL-101-NH2形成了Z型异质结。

     

  • 图  1  (a)晶态红磷纳米带(cRP NRs),(b)MIL-101-NH2和(c)cRP NRs/MIL-101-NH2的SEM图像

    Figure  1.  SEM images of (a) crystalline red phosphorus nanoribbons (cRP NRs), (b) MIL-101-NH2 and (c) cRP NRs/MIL-101-NH2

    图  2  (a,b,c) cRP NRs, MIL-101-NH2和 cRP NRs/ MIL-101-NH2的TEM图像,(d) cRP NRs/ MIL-101-NH2的元素分布,(e) cRP NRs/ MIL-101-NH2的晶格条纹图像,(f) cRP NRs, MIL-101-NH2和 cRP NRs/ MIL-101-NH2的XRD图像

    Figure  2.  (a, b, c) TEM images of cRP NRs, MIL-101-NH2 and cRP NRs/ MIL-101-NH2, (d) elemental distribution of cRP NRs/ MIL-101-NH2, (e) lattice fringe images of cRP NRs/ MIL-101-NH2, (f) XRD images of cRP NRs, MIL-101-NH2, and cRP NRs/ MIL-101-NH2

    图  3  cRP NRs, MIL-101-NH2和 MIL-101-NH2的XPS全谱图像

    Figure  3.  XPS full spectrum images of cRP NRs, MIL-101-NH2, and MIL-101-NH2

    图  4  cRP NRs/MIL-101-NH2的C 1s、O 1s、Fe 2p和P 2p图谱

    Figure  4.  C 1s, O 1s, Fe 2p and P 2p of cRP NRs/MIL-101-NH2

    图  5  cRP NRs、MIL-101-NH2及cRP NRs/MIL-101-NH2的N2吸脱附曲线

    Figure  5.  N2 absorption and desorption curves of cRP NRs, MIL-101-NH2 and cRP NRs/MIL-101-NH2

    图  6  (a)cRP NRs、MIL-101-NH2及cRP NRs/MIL-101-NH2的UV-Vis图,(b) Tauc's 图,(c)Mott-Schottky曲线

    Figure  6.  (a) UV-Vis diagram of cRP NRs, MIL-101-NH2 and cRP NRs/MIL-101-NH2, (b) Tauc's diagram, (c) Mott-Schottky curve

    图  7  cRP NRs、MIL-101-NH2及cRP NRs/MIL-101-NH2的瞬态光电流响应对比

    Figure  7.  Comparison of transient photocurrent responses of cRP NRs,MIL-101-NH2 and cRP NRs/MIL-101-NH2

    图  8  cRP NRs、MIL-101-NH2、cRP NRs/MIL-101-NH2 (2∶1)、 cRP NRs/MIL-101-NH2 (4∶3)、cRP NRs/MIL-101-NH2 (1∶1)、cRP NRs/MIL-101-NH2 (4∶5)的降解曲线

    Figure  8.  (a) cRP NRs, MIL-101-NH2, cRP NRs/MIL-101-NH2 (2∶1), cRP NRs/MIL-101-NH2 (4∶3), cRP NRs/MIL-101-NH2 (1∶1), cRP Degradation curves of NRs/MIL-101-NH2 (4∶5)

    图  9  cRP NRs、MIL-101-NH2、cRP NRs/MIL-101-NH2 (2∶1)、 cRP NRs/MIL-101-NH2 (4∶3)、cRP NRs/MIL-101-NH2 (1∶1)、cRP NRs/MIL-101-NH2 (4∶5)动力学拟合曲线

    Figure  9.  Kinetic fitting curve of cRP NRs, MIL-101-NH2, cRP NRs/MIL-101-NH2 (2∶1), cRP NRs/MIL-101-NH2 (4∶3), cRP NRs/MIL-101-NH2 (1∶1), cRP NRs/MIL-101-NH2 (4∶5)

    图  10  MIL-101-NH2和cRP NRs/MIL-101-NH2的循环降解曲线

    Figure  10.  Cyclic degradation curves of MIL-101-NH2 and cRP NRs/MIL-101-NH2

    图  11  cRP NRs/MIL-101-NH2的自由基捕获曲线

    Figure  11.  Free radical trapping curves of cRP NRs/MIL-101-NH2

    图  12  cRP NRs/MIL-101-NH2的光催化降解机理图

    Figure  12.  Photocatalytic degradation mechanism of cRP NRs/MIL-101-NH2

    图  13  cRP NRs/MIL-101-NH2降解TC可能的路径

    Figure  13.  Possible pathways of TC degradation by cRP NRs/MIL-101-NH2

    表  1  其他文献材料降解四环素效果对比

    Table  1.   Comparison of tetracycline degradation effects of other materials in literature

    Materials Catalyst concentration/
    (mg·L−1)
    Dosage/mg TC concentration/
    (mg·L−1)
    Reaction
    time/min
    Degradation
    efficiency
    Reference
    cRP/MIL-101(Fe)-NH2 0.2 10 50 120 82% This study
    MIL-101(Fe)/MIL-100(Fe) 0.125 10 50 140 80% [31]
    TiO2 0.2 20 10 120 76.60% [32]
    BiOI/MIL-125(Ti) 0.25 25 20 120 70% [33]
    CDs/MIL-101(Fe) 0.5 50 75 120 81% [34]
    RP/MIL-101(Fe) 0.5 50 50 80 90.10% [15]
    PSCN-50 1 100 10 60 85.50% [35]
    MIL-101(Fe)/MoS2 0.3 30 100 40 85% [36]
    RP/HAp 1 100 10 30 100% [10]
    P-BiOCl 0.5 50 20 30 81% [37]
    Notes:TiO2 is titanium dioxide, BiOI is a compound of bismuth oxide and iodine, CDs are carbon dots, RP is red phosphorus, PSCN is phosphorus-sulfur co-doped g-C3N4, MoS2 is molybdenum disulfide, HAp is a hollow hydroxyapatite, P is phosphorus, BiOCl is a compound of bismuth oxide and chlorine.
    下载: 导出CSV
  • [1] QI J, LI J, WAN Y, et al. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH2-MIL-101(Al) nanoprobe[J]. Food Chemistry, 2024, 435: 137586. doi: 10.1016/j.foodchem.2023.137586
    [2] BAGRI F, HASSANI A, JARRAH A, et al. Highly effective elimination of tetracycline and ciprofloxacin antibiotics from synthetic wastewater by novel magnetic P2W18O62/MIL-101(Fe)/NiFe2O4 nanocomposite[J]. Separation and Purification Technology, 2024, 329: 125128. doi: 10.1016/j.seppur.2023.125128
    [3] YERNAR A, YULIYA S, MARYAM D, et al. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies[J]. Antibiotics, 2023, 12(3): 440-440. doi: 10.3390/antibiotics12030440
    [4] MA L, XU J, LIU Y, et al. Improved degradation of tetracycline by Cu-doped MIL-101 (Fe) in a coupled photocatalytic and persulfate oxidation system: Efficiency, mechanism, and degradation pathway[J]. Separation and Purification Technology, 2023, 305: 122450. doi: 10.1016/j.seppur.2022.122450
    [5] LAN D, ZHU H, ZHANG J, et al. Heterojunction of UiO-66 and porous g-C3N4 for boosted photocatalytic removal of organic dye[J]. Applied Surface Science, 2024, 655: 159623. doi: 10.1016/j.apsusc.2024.159623
    [6] ATHIRA T K, ROSHITH M, SATHEESH BABU T G, et al. Fibrous red phosphorus as a non-metallic photocatalyst for the effective reduction of Cr(VI) under direct sunlight[J]. Materials Letters, 2021, 283: 128750. doi: 10.1016/j.matlet.2020.128750
    [7] FAROOQUE L M, MUSTAFA T, YAR K M, et al. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review[J]. Inorganic Chemistry Communications, 2024, 159: 111613 doi: 10.1016/j.inoche.2023.111613
    [8] RUCK M, HOPPE D, WAHL B, et al. Fibrous red phosphorus[J]. Angewandte Chemie International Edition, 2005, 44(46): 7616-7619. doi: 10.1002/anie.200503017
    [9] AMARAL P E, NIEMAN G P, SCHWENK G R, et al. High electron mobility of amorphous red phosphorus thin films[J]. Angewandte Chemie International Edition, 2019, 58(20): 6766-6771. doi: 10.1002/anie.201902534
    [10] ZOU R, XU T, LEI X, et al. Novel and efficient red phosphorus/hollow hydroxyapatite microsphere photocatalyst for fast removal of antibiotic pollutants[J]. Journal of Physics and Chemistry of Solids, 2020, 139: 109353. doi: 10.1016/j.jpcs.2020.109353
    [11] LIU Q, ZHANG X, WANG J, et al. Crystalline Red Phosphorus Nanoribbons: Large-Scale Synthesis and Electrochemical Nitrogen Fixation[J]. Angewandte Chemie International Edition, 2020, 59(34): 14383-14387. doi: 10.1002/anie.202006679
    [12] SHEN Z, HU Z, WANG W, et al. Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity[J]. Nanoscale, 2014, 6(23): 14163-14167. doi: 10.1039/C4NR04250F
    [13] HU C, HE J, LIANG J, et al. Heterogeneous photo-Fenton catalyst α-Fe2O3@g-C3N4@NH2-MIL-101(Fe) with dual Z-Scheme heterojunction for degradation of tetracycline[J]. Environmental Research, 2023, 231: 116313. doi: 10.1016/j.envres.2023.116313
    [14] LUO Y, LI C, LIU Z, et al. Photocatalytic activation of peroxymonosulfate (PMS) by CNN@NH2-MIL-101(Fe) Z-scheme heterojunction for phthalates degradation under visible light irradiation[J]. Chemical Engineering Journal, 2024, 481: 148683. doi: 10.1016/j.cej.2024.148683
    [15] LEI X, WANG J, SHI Y, et al. Constructing novel red phosphorus decorated iron-based metal organic framework composite with efficient photocatalytic performance[J]. Applied Surface Science, 2020, 528: 146963. doi: 10.1016/j.apsusc.2020.146963
    [16] WANG C-Y, WANG C-C, CHU H-Y, et al. In situ growth of MIL-101 (Fe) on waste PET plastic slices for effective arsenic removal[J]. Separation and Purification Technology, 2024, 331: 125589. doi: 10.1016/j.seppur.2023.125589
    [17] GUO Z, WU X, MENG J, et al. Preparation of Mg@MIL-101(Fe)/NH2-MIL-125(Ti) bis-MIL composites and their sorption performance towards Pb(II) from aqueous solution[J]. Separation and Purification Technology, 2024, 339: 126692. doi: 10.1016/j.seppur.2024.126692
    [18] ZABELIN D, TOMŠíKOVá K, ZABELINA A, et al. Enhancing hydrogen storage efficiency: Surface-modified boron nanosheets combined with IRMOF-20 for safe and selective hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 57: 1025-1031. doi: 10.1016/j.ijhydene.2023.12.285
    [19] RAJAN A, YAZHINI C, DHILEEPAN M D, et al. Leveraging the photocatalytic Cr (VI) reduction by an IRMOF-3@NH2-MIL-101 (Fe) heterostructure based on interfacial Lewis acid-base interaction[J]. Chemosphere, 2024: 141473-141473.
    [20] JAY T, KEXI G W, J J M, et al. Selective adsorption of butenes over butanes on isoreticular Ni-IRMOF-74-I and Ni-IRMOF-74-II[J]. RSC advances, 2022, 12(32): 20599-20602. doi: 10.1039/D2RA00817C
    [21] YUE P, SHAN X, ZHOUPING W, et al. Sensitive SERS aptasensor for histamine detection based on Au/Ag nanorods and IRMOF-3@Au based flexible PDMS membrane[J]. Analytica Chimica Acta, 2024, 1288: 342147. doi: 10.1016/j.aca.2023.342147
    [22] VALENZANO L, CIVALLERI B, CHAVAN S, et al. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory[J]. Chemistry of Materials, 2011, 23(7): 1700-1718. doi: 10.1021/cm1022882
    [23] MO Z, ZHANG H, SHAHAB A, et al. Functionalized metal-organic framework UIO-66 nanocomposites with ultra-high stability for efficient adsorption of heavy metals: Kinetics, thermodynamics, and isothermal adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 146: 104778. doi: 10.1016/j.jtice.2023.104778
    [24] GAYATHRI K, VINOTHKUMAR K, TEJA Y N, et al. Ligand-mediated band structure engineering and physiochemical properties of UiO-66 (Zr) metal-organic frameworks (MOFs) for solar-driven degradation of dye molecules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129992. doi: 10.1016/j.colsurfa.2022.129992
    [25] KALAJ M, PROSSER K E, COHEN S M. Room temperature aqueous synthesis of UiO-66 derivatives via postsynthetic exchange[J]. Dalton Transactions, 2020, 49(26): 8841-8845. doi: 10.1039/D0DT01939A
    [26] DESTEFANO M R, ISLAMOGLU T, GARIBAY S J, et al. Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites[J]. Chemistry of Materials, 2017, 29(3): 1357-1361. doi: 10.1021/acs.chemmater.6b05115
    [27] YANG T, MA T, YANG L, et al. A self-supporting UiO-66 photocatalyst with Pd nanoparticles for efficient degradation of tetracycline[J]. Applied Surface Science, 2021, 544: 148928. doi: 10.1016/j.apsusc.2021.148928
    [28] HENDRICKX K, VANPOUCKE D E P, LEUS K, et al. Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study[J]. Inorganic Chemistry, 2015, 54(22): 10701-10710. doi: 10.1021/acs.inorgchem.5b01593
    [29] XU Q, SUN Y, LV T, et al. Selective CO2 photoreduction into CO over Ti3C2 quantum dots decorated NH2-MIL-101(Fe) heterostructures[J]. Journal of Alloys and Compounds, 2023, 954: 170088. doi: 10.1016/j.jallcom.2023.170088
    [30] SUN X, FANG Y, MU J, et al. One-step synthesis of mixed-valence NH2-MIL-101(Fe2+/Fe3+) with controllable morphology for photocatalytic removal of tetracycline and Cr(Ⅵ)[J]. Journal of Alloys and Compounds, 955: 169969.
    [31] JIN Y, MI X, QIAN J, et al. Modular construction of an MIL-101(Fe)@MIL-100(Fe) dual-compartment nanoreactor and its boosted photocatalytic activity toward tetracycline[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48285-48295.
    [32] WU S, HU H, LIN Y, et al. Visible light photocatalytic degradation of tetracycline over TiO2[J]. Chemical Engineering Journal, 2020, 382: 122842. doi: 10.1016/j.cej.2019.122842
    [33] JIANG W, LI Z, LIU C, et al. Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst[J]. Journal of Alloys and Compounds, 2021, 854: 157166. doi: 10.1016/j.jallcom.2020.157166
    [34] YUAN H, SUN X, ZHANG S, et al. Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe) octahedrons[J]. Chinese Journal of Chemical Engineering, 2024, 66: 298-309. doi: 10.1016/j.cjche.2023.10.006
    [35] JIANG L, YUAN X, ZENG G, et al. Phosphorus-and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5831-5841.
    [36] HU Z, GUO B, WU H, et al. Activation of Na2S2O8 by MIL-101(Fe)/MoS2 composite for the degradation of tetracycline with visible light assistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130202. doi: 10.1016/j.colsurfa.2022.130202
    [37] CAO J, CEN W, JING Y, et al. P-doped BiOCl for visible light photodegradation of tetracycline: An insight from experiment and calculation[J]. Chemical Engineering Journal, 2022, 435: 134683. doi: 10.1016/j.cej.2022.134683
    [38] LV T, LI D, HONG Y, et al. Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water[J]. Dalton Transactions, 2017, 46(37): 12675-12682. doi: 10.1039/C7DT02151H
    [39] CHEN J, XIAO X, WANG Y, et al. Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation[J]. Applied Surface Science, 2019, 467: 1000-1010.
    [40] ZHANG Y, SHI J, XU Z, et al. Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates[J]. Chemosphere, 2018, 202: 661-668. doi: 10.1016/j.chemosphere.2018.03.116
    [41] YU X, ZHANG J, ZHANG J, et al. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: analysis of degradation pathways and intermediates[J]. Chemical Engineering Journal, 2019, 374: 316-327. doi: 10.1016/j.cej.2019.05.177
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 修回日期:  2024-05-07
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回