Preparation and Photocatalytic Properties of Novel Composite CdIn2S4/ZnIn2S4 Heterojunction
-
摘要:
探索高效、稳定的光催化剂是实现实用化太阳能光催化降解污染物的永恒追求。具有二维超薄层状结构的ZnIn2S4表现出优异的性能,不仅具有高能带结构,而且还具有优异的光学性质。此外,ZnIn2S4的制备简单,超薄的ZnIn2S4可以很容易地附着在半导体表面。然而,由于光催化时ZnIn2S4具有较高的电荷复合效率,导致活性很低。半导体之间结合构建异质结的方法可以有效抑制光生电荷的复合。例如,具有层次化的CdIn2S4/石墨烯纳米异质结构已经被制备成作为太阳能制氢的光催化剂。因此,构建异质结是减少光生电荷复合的一种有效途径。本文采用一种简便的无模板化学共沉淀法在160°C下制备了CdIn2S4/ZnIn2S4-1,然后在500°C经管式炉退火得到CdIn2S4/ZnIn2S4-2。以亚甲基蓝为污染物,研究了异质结材料在可见光下的光催化性能,可见光光源下对亚甲基蓝90min降解率为96.7%。为了研究电子-空穴对的分离和迁移,还进行了暂态光电流响应测试和电化学阻抗谱(EIS)测试了光电化学性质。最后,根据自由基淬灭实验结果提出了可能的降解机制。 (a)不同材料在可见光照射下的光催化降解曲线, (b) CdIn2S4/ZnIn2S4-2降解亚甲基蓝的UV-Vis光谱随光照时间的变化 Abstract: Exploring efficient and stable photocatalysts is an ongoing pursuit in effective solar photocatalytic degradation of pollutants. Through a chemical coprecipitation method, CdIn2S4/ZnIn2S4 microspheres were synthesized and then further annealed at 500°C to obtain a CdIn2S4/ZnIn2S4 heterojunction that showed greater degradation performances. Characterization of the sample through SEM, XRD, XPS, BET and UV-Vis DRS determined that the heterojunction had the spherical appearance and typical mesoporous structure. The surface photocurrent response and EIS showed significantly enhanced catalytic activity. CdIn2S4/ZnIn2S4 heterojunction catalysts displayed the best photocatalytic activity in the degradation of methylene blue (MB) after 90 min of illumination, yielding a 96.7% degradation rate. Enhancement of photocatalytic activity is attributed to the increase of visible light absorption and excellent separation of ability of h+-e- pair. A control experiment revealed that the active species ·O2- played a significant role in the degradation process. Based on these findings, a mechanism for the photocatalytic degradation of pollutants via CdIn2S4/ZnIn2S4 heterojunction was predicted. The composite CdIn2S4/ZnIn2S4 heterojunction synthesized in this study has reference significance for the preparation of high-efficient photocatalytic materials, and shows its good practicability in the degradation of pollutants.-
Key words:
- photocatalysis /
- CdIn2S4/ZnIn2S4 /
- heterojunction /
- active species /
- reaction mechanism /
- methylene blue
-
图 5 (a)不同材料在可见光照射下的光催化降解曲线, (b)CdIn2S4/ZnIn2S4-2降解 MB的UV-Vis光谱随光照时间的变化, (c) 不同材料光催化降解MB的动力学(C0和C分别为污染物的初始浓度和降解反应过程中某时刻的浓度), (d)相应的反应常数k
Figure 5. (a) Photocatalytic degradation curve of different materials under visible light irradiation, (b) UV Vis spectrum of CdIn2S4/ZnIn2S4-2 degrading MB changes with light time, (c) kinetics of photocatalytic degradation of MB by different materials (C0 and C are the initial concentration of pollutants and the concentration at a certain time during the degradation reaction) (d) corresponding reaction constant k
图 7 (a)自由基抑制剂的影响,(b)和(c)CdIn2S4/ZnIn2S4-2原位EPR光谱,(d)稳定性分析,(e)CdIn2S4/ZnIn2S4-2反应前后XRD;(f)亚甲基蓝去除率Fig. 7(a) Effect of free radical inhibitor, (b) and (c) CdIn2S4/ZnIn2S4-2 in-situ EPR spectrum, (d) stability analysis, (e) XRD before and after CdIn2S4/ZnIn2S4-2 reaction; (f) Methylene blue removal rate
表 1 CdIn2S4/ZnIn2S4 EDS能谱
Table 1. CdIn2S4/ZnIn2S4 EDS
Atonic Cd Zn In S CdIn2S4/ZnIn2S4-1 9.94% 3.93% 55.19% 30.94% CdIn2S4/ZnIn2S4-2 10.06% 3.84% 55.18% 30.92% -
[1] TANG T, LU G N, WANG W J, et al. Photocatalytic removal of organic phosphate esters by TiO2: effect of inorganic ions and humic acid[J]. Chemosphere:Environmental Toxicology and Risk Assessment,2018,206(Sep.):26-32. [2] G M J, LOUISE L, TOMMY H, et al. Crystalline ZnO photocatalysts prepared at ambient temperature: influence of morphology on p-nitrophenol degradation in water[J]. Catalysts,2021,11(10):1182. doi: 10.3390/catal11101182 [3] WANG D, SU B, JIANG Y, et al. Polytype 1 T/2 H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2017,330:102-108. doi: 10.1016/j.cej.2017.07.126 [4] PING Z, LINA Z, ENLAI D, et al. Synthesis of CaIn2S4/TiO2 heterostructures for enhanced uv–visible light photocatalytic activity[J]. Journal of Alloys and Compounds,2021,885:885. [5] TIAN B, XUE W, YAN D, et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap[J]. Inorganic Chemistry, 2020, 59(9) [6] PENG D X, WANG Y T, SHI H F, et al. Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytichydrogen evolution and pollutant degradation[J]. Journal of Colloid and Interface Science,2021,613:194-206. [7] MIN Y, YU Y, ZHOU L, et al. Ligand and hard base assisted preparation of agins single phase nanocrystals for enhancing the photocatalytic activity of TiO2[J]. Journal of Physics D:Applied Physics,2021,54(37):375101. doi: 10.1088/1361-6463/ac0c4d [8] WENG R G, FENG T, YU Z D, et al. Efficient mineralization of tbbpa via an integrated photocatalytic reduction/oxidation process mediated by MoS2/SnIn4S8 photocatalyst[J]. Chemosphere,2021,285:131542. doi: 10.1016/j.chemosphere.2021.131542 [9] WANG Y, LIU M, WANG C, et al. Hollow nanoboxes Cu2-xS@ZnIn2S4 core-shell S-scheme heterojunction with broad- spectrum response and enhanced photothermal-photocatalytic performance[J]. Small,2022,18:2202544. doi: 10.1002/smll.202202544 [10] HE Y, CHEN C, LIU Y, et al. Quantitative evaluation of carrier dynamics in full-spectrum responsive metallic ZnIn2S4 with indium vacancies for boosting photocatalytic CO2 reduction[J]. National Science Review,2022,22:4970-4978. [11] HAN G, LIU X, CAO Z, et al. Photocatalytic pinacol C-C coupling and jet fuel precursor production on ZnIn2S4 nanosheets[J]. ACS Catalysis,2020,10:9346-9355. doi: 10.1021/acscatal.0c01715 [12] JIN P, WANG L, MA X, et al. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride[J]. Applied Catalysis B:Environmental,2021,284:119762. doi: 10.1016/j.apcatb.2020.119762 [13] HE Y Q, RAO H, SONG K P, et al. 3 D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction[J]. Advanced Theory and Simulations,2019,29:1905153. [14] WANG S B, GUAN B Y, LOU X W. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society,2018,140:5037-5040. doi: 10.1021/jacs.8b02200 [15] CHEN W, CHANG L, REN S B, et al. Direct Z-scheme 1 D/2 D WO2.72 /ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal[J]. Journal of Hazardous Materials,2020,384:121308. doi: 10.1016/j.jhazmat.2019.121308 [16] ZHU T T, YE X J, ZHANG Q Q, et al. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid[J]. Journal of Hazardous Materials,2019,367:277-285. doi: 10.1016/j.jhazmat.2018.12.093 [17] SWAIN G, SULTANA S, PARIDA K, et al. One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p-n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation[J]. Inorganic Chemistry,2019,58:9941-9955. doi: 10.1021/acs.inorgchem.9b01105 [18] YU X D, QU X S, GUO Y H, et al. Photocatalytic dye methyl orange decomposition on ternary sulfide (CdIn2S4) under visible-light[J]. Chin Chem Lett,2005,16:1259-1262. [19] WANG W J, NG T W, HO W K, et al. CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic in activation mechanisms[J]. Applied Catalysis B Environmental,2013,129:482-490. doi: 10.1016/j.apcatb.2012.09.054 [20] CHEN, HUANG, TING, et al. Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity[J]. Journal of Hazardous Materials,2016,320:529-538. doi: 10.1016/j.jhazmat.2016.08.025 [21] MAHADADALKAR M A, KALE S B, KALUBARME R S, et al. Architecture of the CdIn2S4 /graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery[J]. RSC Advances,2016,6(41):34724-34736. doi: 10.1039/C6RA02002J [22] QIU P X, YAO J H, CHEN H, et al. Enhanced visible-lightphotocatalytic decomposition of 2, 4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials,2016,317:158-168. doi: 10.1016/j.jhazmat.2016.05.069 [23] NG B J, PUTRI L K, KONG X Y, et al. Z-scheme photocatalytic systems for solar water splitting[J]. Advanced Science,2020,7:1903171. doi: 10.1002/advs.201903171 [24] CHEN S, VEQUIZO J J M. , PAN Z, et al. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting[J]. Journal of the American Chemical Society,2021,143:10633-10641. doi: 10.1021/jacs.1c03555 [25] HAN S, LI B, HUANG L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light[J]. Chinese Journal of Structural Chemistry,2022,41(1):7-13. [26] ALSHEHERI S Z, MOHAMED R M. Z-scheme mesoporous CdIn2S4 /g-C3N4 heterojunction for enlarged photocatalytic efficiency utilizing visible-light illumination[J]. Optical Materials,2022,123:111964. [27] WANG X, WANG X, HUANG J, et al. Interfacial chemical bond and internal electric field modulated z-scheme SV-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution[J]. Nature Publishing Group,2021,12(1):4112-4112. [28] ZHANG G, SUN J, CHEN D, et al. Hierarchical core-shell heterostructures of ZnIn2S4 nanosheets on electrospun In2O3 nanofibers with highly enhanced photocatalytic activity[J]. Journal of Hazardous Materials,2020,398:122889. doi: 10.1016/j.jhazmat.2020.122889 [29] MA Y, CUI J, YIN M, et al. Enhancement of visible light driven dye degradation and photocatalytic H2 evolution over MoS2 through combination with perylene diimide aggregates[J]. New Journal of Chemistry,2021,45(32):14432-14433. doi: 10.1039/D1NJ01999F [30] MANJIRI, A. , MAHSFSFSLKAR, et al. Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel[J]. Journal of Materials Chemistry,2018,6(33):16064-16073. doi: 10.1039/C8TA03398F [31] MA D, SHI J W, ZOU Y, et al. Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production[J]. Nanoscale,2018,10:7860-7870. doi: 10.1039/C8NR00170G [32] FAN L, GUO R. Fabrication of novel CdIn2S4 hollow spheres via a facile hydrothermal process[J]. Journal of Physical Chemistry C,2008,112:10700-10706. doi: 10.1021/jp8022259 [33] ZHANG B, SHI H, HU X, et al. A novel s-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity[J]. Journal of Physics D:Applied Physics,2020,53(20):205101. doi: 10.1088/1361-6463/ab7563 [34] SUN M, ZHAO X, ZENG Q, et al. Facile synthesis of hierarchical ZnIn2S4/ CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity[J]. Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2017,407(Jun.15):328-336. [35] ZHANG B, LI X M, MA Y S, et al. Visible-light photoelectrocatalysis/H2O2 synergistic degradation of organic pollutants by a magnetic Fe3O4@SiO2@mesoporous TiO2 catalyst-loaded photoelectrode[J]. RSC Advances,2022,12:30577-30587. doi: 10.1039/D2RA05183D [36] KOMTCHOU S, DIRANY A, DROGUI P, et al. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes[J]. Water Research,2017,125:91-103. doi: 10.1016/j.watres.2017.08.036 [37] CHEN F, YANG Q, WANG Y, et al. Novel ternary heterojunction photcocatalyst of ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant[J]. Applied Catalysis B:Environmental,2017,205:133-147. doi: 10.1016/j.apcatb.2016.12.017 [38] ZHOU C, LAI C, HUANG D, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven[J]. Applied Catalysis B:Environmental,2018,220:202-210. doi: 10.1016/j.apcatb.2017.08.055 [39] YAN X, WANG B, ZHAN J, et al. Hierarchical columnar ZnIn2S4/ BiVO4 z-scheme heterojunctions with carrier highway boost photocatalytic mineralization of antibiotics[J]. Chemical Engineering Journal,2023,452:139271. doi: 10.1016/j.cej.2022.139271 [40] LIANG Q, GAO W, LIU C, et al. A novel 2 D/1 D core-shell heterostructures coupling mof-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity[J]. Journal of Hazardous Materials,2020,392:122500. doi: 10.1016/j.jhazmat.2020.122500 -

计量
- 文章访问数: 121
- HTML全文浏览量: 54
- 被引次数: 0