Preparation and photocatalytic properties of novel composite CdIn2S4/ZnIn2S4 heterojunction
-
摘要: 探索高效、稳定的光催化剂是实现实用化太阳能光催化降解污染物的永恒追求。采用化学共沉淀法合成了CdIn2S4/ZnIn2S4微球,然后500°C退火得到降解性能更好的CdIn2S4/ZnIn2S4异质结。SEM、XRD、XPS、BET和UV-Vis DRS对样品进行了表征。观察到异质结外貌为球形,具有典型的介孔结构,表面光电流响应和阻抗测试结果显示其活性显著增强。在光催化降解亚甲基蓝的反应中,退火后的CdIn2S4/ZnIn2S4异质结的光催化活性最佳。反应90 min后,亚甲基蓝(MB)的降解率为96.7%。活性的提高可以归因于催化剂对可见光吸收的增强和光生电荷分离效率的提高。对照实验证明,降解体系中产生的活性物种•O2−在降解过程中起关键作用。预测了异质结光催化降解污染物的机制。本研究合成的复合CdIn2S4/ZnIn2S4异质结对制备高效光催化材料具有借鉴意义,并展示了其在降解污染物方面的良好实用性。Abstract: Exploring efficient and stable photocatalysts is an ongoing pursuit in effective solar photocatalytic degradation of pollutants. Through a chemical coprecipitation method, CdIn2S4/ZnIn2S4 microspheres were synthesized and then further annealed at 500℃ to obtain a CdIn2S4/ZnIn2S4 heterojunction that showed greater degradation performances. Characterizations of the samples through SEM, XRD, XPS, BET and UV-Vis DRS determined that the heterojunction had the spherical appearance and typical mesoporous structure. The surface photocurrent response and EIS showed significantly enhanced catalytic activity. CdIn2S4/ZnIn2S4 heterojunction catalysts displayed the best photocatalytic activity in the degradation of methylene blue (MB) after 90 min of illumination, yielding a degradation rate of 96.7%. Enhancement of photocatalytic activity is attributed to the increase of visible light absorption and excellent separation ability of h+-e− pair. A control experiment revealed that the active species •O2 − played a significant role in the degradation process. Based on these findings, a mechanism for the photocatalytic degradation of pollutants via CdIn2S4/ZnIn2S4 heterojunction was predicted. The composite CdIn2S4/ZnIn2S4 heterojunction synthesized in this study has reference significance for the preparation of high-efficient photocatalytic materials, and shows its good practicability in the degradation of pollutants.
-
Key words:
- photocatalysis /
- CdIn2S4/ZnIn2S4 /
- heterojunction /
- active species /
- reaction mechanism /
- methylene blue
-
图 2 (a) CdIn2S4-1、CdIn2S4-2、ZnIn2S4-1、ZnIn2S4-2、CdIn2S4/ZnIn2S4-1和CdIn2S4/ZnIn2S4-2的XRD图谱;(b) CdIn2S4/ZnIn2S4-2的吸附-脱附等温线(插图为粒径分布图)
Figure 2. (a) XRD patterns of CdIn2S4-1, CdIn2S4-2, ZnIn2S4-1, ZnIn2S4-2, CdIn2S4/ZnIn2S4-1 and CdIn2S4/ZnIn2S4-2; (b) Adsorption desorption isotherm of CdIn2S4/ZnIn2S4-2 (Inset is particle size distribution map)
图 3 CdIn2S4-1、CdIn2S4-2、ZnIn2S4-1、ZnIn2S4-2、CdIn2S4/ZnIn2S4-1和CdIn2S4/ZnIn2S4-2复合材料的紫外-可见漫反射光谱 (a) 和Tauc 图 (b)
Figure 3. UV-visible diffuse reflection spectra (a) and Tauc plot (b) of CdIn2S4-1, CdIn2S4-2, ZnIn2S4-1, ZnIn2S4-2, CdIn2S4/ZnIn2S4-1 and CdIn2S4/ZnIn2S4-2 composite material
Eg—Band gap energy; h—Planck constant; F(R)—Kubelka-Munk function; v—Frequency
图 5 (a) 不同材料在可见光照射下的光催化降解曲线;(b) CdIn2S4/ZnIn2S4-2降解 MB的UV-Vis光谱随光照时间的变化;(c) 不同材料光催化降解MB的动力学(C0和C分别为污染物的初始浓度和降解反应过程中某时刻的浓度);(d) 相应的反应常数k
Figure 5. (a) Photocatalytic degradation curve of different materials under visible light irradiation; (b) UV Vis spectra of CdIn2S4/ZnIn2S4-2 degrading MB changes with light time; (c) Kinetics of photocatalytic degradation of MB by different materials (C0 and C are the initial concentration of pollutants and the concentration at a certain time during the degradation reaction); (d) Corresponding reaction constant k
图 6 CdIn2S4-2、ZnIn2S4-2、CdIn2S4/ZnIn2S4-2复合材料的电化学表征:(a) 表面光电流响应图谱(SPC);(b) 电化学阻抗图谱(EIS)
Figure 6. Electrochemical characterization of CdIn2S4-2, ZnIn2S4-2 and CdIn2S4/ZnIn2S4-2 composite materials: (a) Surface photocurrent density curves (SPC); (b) Electrochemical impedance spectroscopy (EIS)
Rs—Solution resistance; Rct—Charge transfer resistance; CPE—Constant phase angle element
图 7 (a) 自由基抑制剂的影响;((b), (c)) CdIn2S4/ZnIn2S4-2原位电子顺磁共振(EPR)光谱;(d) 稳定性分析;(e) CdIn2S4/ZnIn2S4-2反应前后XRD图谱;(f) 亚甲基蓝去除率
Figure 7. (a) Effect of free radical inhibitor; ((b), (c)) Electron paramagnetic resonance (EPR) spectra of CdIn2S4/ZnIn2S4-2 in-situ; (d) Stability analysis; (e) XRD patterns of before and after CdIn2S4/ZnIn2S4-2 reaction; (f) Methylene blue removal rate
EDTA-2Na—Ethylenediamine tetraacetic acid disodium salt; BQ—Benzoquinone; TBA—Tertiary butanol; TOC—Total organic carbon
表 1 CdIn2S4/ZnIn2S4的EDS数据
Table 1. EDS data of CdIn2S4/ZnIn2S4
Atonic Cd Zn In S CdIn2S4/ZnIn2S4-1 9.94% 3.93% 55.19% 30.94% CdIn2S4/ZnIn2S4-2 10.06% 3.84% 55.18% 30.92% -
[1] TANG T, LU G N, WANG W J, et al. Photocatalytic removal of organic phosphate esters by TiO2: Effect of inorganic ions and humic acid[J]. Chemosphere: Environmental Toxicology and Risk Assessment,2018,206:26-32. [2] MAHY J G, LEJEUNE L, HAYNES T, et al. Crystalline ZnO photocatalysts prepared at ambient temperature: Influence of morphology on p-nitrophenol degradation in water[J]. Catalysts,2021,11(10):1182. doi: 10.3390/catal11101182 [3] WANG D Z, SU B Y, JIANG Y, et al. Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2017,330:102-108. doi: 10.1016/j.cej.2017.07.126 [4] ZHANG P, ZHANG L N, DONG E L, et al. Synthesis of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light photocatalytic activity[J]. Journal of Alloys and Compounds,2021,885:161027. [5] BAI T Y, WANG X M, DONG Y Y, et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap[J]. Inorganic Che-mistry, 2020, 59(9): 5975-5982. [6] PENG D X, WANG Y T, SHI H F, et al. Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytic hydrogen evolution and pollutant degradation[J]. Journal of Colloid and Interface Science,2022,613:194-206. [7] YANG M, YAN Y J, LIU E Z, et al. Ligand and hard base assisted preparation of AgInS2 single phase nanocrystals for enhancing the photocatalytic activity of TiO2[J]. Journal of Physics D: Applied Physics,2021,54(37):1-10. doi: 10.1088/1361-6463/ac0c4d [8] WENG R G, TIAN F, YU Z D, et al. Efficient mineralization of TBBPA via an integrated photocatalytic reduction/oxidation process mediated by MoS2/SnIn4S8 photocatalyst[J]. Chemosphere,2021,285:131542. doi: 10.1016/j.chemosphere.2021.131542 [9] WANG Y C, LIU M J, WU C X, et al. Hollow nanoboxes Cu2-xS@ZnIn2S4 core-shell S-scheme heterojunction with broad-spectrum response and enhanced photothermal-photocatalytic performance[J]. Small,2022,18(31):2202544. doi: 10.1002/smll.202202544 [10] HE Y Q, CHEN C L, LIU Y X, et al. Quantitative evaluation of carrier dynamics in full-spectrum responsive metallic ZnIn2S4 with indium vacancies for boosting photocatalytic CO2 reduction[J]. Nano Letters,2022,22(12):4970-4978. [11] HAN G Q, LIU X W, CAO Z, et al. Photocatalytic pinacol C—C coupling and jet fuel precursor production on ZnIn2S4 nanosheets[J]. ACS Catalysis,2020,10(16):9346-9355. doi: 10.1021/acscatal.0c01715 [12] JIN P X, WANG L, MA X L, et al. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride[J]. Applied Catalysis B: Environmental,2021,284:119762. doi: 10.1016/j.apcatb.2020.119762 [13] HE Y Q, RAO H, SONG K P, et al. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction[J]. Advanced Functional Materials,2019,29(45):1905153. [14] WANG S B, GUAN B Y, LOU X W D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society,2018,140(15):5037-5040. doi: 10.1021/jacs.8b02200 [15] CHEN W, CHANG L, REN S B, et al. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal[J]. Journal of Hazardous Materials,2020,384:121308. doi: 10.1016/j.jhazmat.2019.121308 [16] ZHU T T, YE X J, ZHANG Q Q, et al. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid[J]. Journal of Hazardous Materials,2019,367:277-285. doi: 10.1016/j.jhazmat.2018.12.093 [17] SWAIN G, SULTANA S, PARIDA K. One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p-n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation[J]. Inorganic Chemistry,2019,58(15):9941-9955. doi: 10.1021/acs.inorgchem.9b01105 [18] YU X D, QU X S, GUO Y H, et al. Photocatalytic dye methyl orange decomposition on ternary sulfide (CdIn2S4) under visible-light[J]. Chinese Chemical Letters,2005,16(9):1259-1262. [19] WANG W J, NG T W, HO W K, et al. CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocataly-tic inactivation mechanisms[J]. Applied Catalysis B: Environmental,2013,129:482-490. doi: 10.1016/j.apcatb.2012.09.054 [20] CHEN W, HUANG T, HUA Y X, et al. Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity[J]. Journal of Hazardous Materials,2016,320:529-538. doi: 10.1016/j.jhazmat.2016.08.025 [21] MAHADADALKAR M A, KALE S B, KALUBARME R S, et al. Architecture of the CdIn2S4/graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery[J]. RSC Advances,2016,6(41):34724-34736. doi: 10.1039/C6RA02002J [22] QIU P X, YAO J H, CHEN H, et al. Enhanced visible-light photocatalytic decomposition of 2, 4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials,2016,317:158-168. doi: 10.1016/j.jhazmat.2016.05.069 [23] NG B J, PUTRI L K, KONG X Y, et al. Z-scheme photocataly-tic systems for solar water splitting[J]. Advanced Science,2020,7(7):1903171. doi: 10.1002/advs.201903171 [24] CHEN S S, VEQUIZO J J M, PAN Z H, et al. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocataly-tic Z-scheme overall water splitting[J]. Journal of the Ame-rican Chemical Society,2021,143(27):10633-10641. doi: 10.1021/jacs.1c03555 [25] HAN S, LI B, HUANG L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light[J]. Chinese Journal of Structural Chemistry,2022,41(1):7-13. [26] ALSHEHERI S Z, MOHAMED R M. Z-scheme mesoporous CdIn2S4/g-C3N4 heterojunction for enlarged photocataly-tic efficiency utilizing visible-light illumination[J]. Optical Materials,2022,123:111946. [27] WANG X H, WANG X H, HUANG J F, et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution[J]. Nature Communications,2021,12(1):1-11. [28] ZHANG G P, SUN J Y, CHEN D Y, et al. Hierarchical core-shell heterostructures of ZnIn2S4 nanosheets on electrospun In2O3 nanofibers with highly enhanced photocataly-tic activity[J]. Journal of Hazardous Materials,2020,398:122889. doi: 10.1016/j.jhazmat.2020.122889 [29] MA Y S, CUI J C, YIN M M, et al. Enhancement of visible light driven dye degradation and photocatalytic H2 evolution over MoS2 through combination with perylene diimide aggregates[J]. New Journal of Chemistry,2021,45(32):14432-14443. doi: 10.1039/D1NJ01999F [30] MAHADADALKAR M A, GOSAVI S W, KALE B B. Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel[J]. Journal of Materials Chemistry A,2018,6(33):16064-16073. doi: 10.1039/C8TA03398F [31] MA D D, SHI J W, ZOU Y J, et al. Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production[J]. Nanoscale,2018,10(16):7860-7870. doi: 10.1039/C8NR00170G [32] FAN L, GUO R. Fabrication of novel CdIn2S4 hollow spheres via a facile hydrothermal process[J]. Journal of Physical Chemistry C,2008,112(29):10700-10706. doi: 10.1021/jp8022259 [33] ZHANG B, SHI H X, HU X Y, et al. A novel S-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity[J]. Journal of Physics D: Applied Physics,2020,53(20):205101. doi: 10.1088/1361-6463/ab7563 [34] SUN M, ZHAO X A, ZENG Q, et al. Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity[J]. Applied Surface Science,2017,407:328-336. [35] ZHANG B, LI X M, MA Y S, et al. Visible-light photoelectrocatalysis/H2O2 synergistic degradation of organic pollutants by a magnetic Fe3O4@SiO2@mesoporous TiO2 catalyst-loaded photoelectrode[J]. RSC Advances,2022,12:30577-30587. doi: 10.1039/D2RA05183D [36] KOMTCHOU S, DIRANY A, DROGUI P, et al. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes[J]. Water Research,2017,125:91-103. doi: 10.1016/j.watres.2017.08.036 [37] CHEN F, YANG Q, WANG Y L, et al. Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant[J]. Applied Catalysis B: Environmental,2017,205:133-147. doi: 10.1016/j.apcatb.2016.12.017 [38] ZHOU C Y, LAI C, HUANG D L, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven[J]. Applied Catalysis B: Environmental,2018,220:202-210. doi: 10.1016/j.apcatb.2017.08.055 [39] YAN X W, WANG B, ZHAO J Z, et al. Hierarchical columnar ZnIn2S4/BiVO4 Z-scheme heterojunctions with carrier highway boost photocatalytic mineralization of antibio-tics[J]. Chemical Engineering Journal,2023,452:139271. doi: 10.1016/j.cej.2022.139271 [40] LIANG Q, GAO W, LIU C H, et al. A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity[J]. Journal of Hazardous Materials,2020,392:122500. doi: 10.1016/j.jhazmat.2020.122500