留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型复合CdIn2S4/ZnIn2S4异质结的制备及其光催化性能

张博 李雪梅 朱文祺

张博, 李雪梅, 朱文祺. 新型复合CdIn2S4/ZnIn2S4异质结的制备及其光催化性能[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 张博, 李雪梅, 朱文祺. 新型复合CdIn2S4/ZnIn2S4异质结的制备及其光催化性能[J]. 复合材料学报, 2023, 41(0): 1-11
Bo ZHANG, Xuemei LI, Wenqi ZHU. Preparation and Photocatalytic Properties of Novel Composite CdIn2S4/ZnIn2S4 Heterojunction[J]. Acta Materiae Compositae Sinica.
Citation: Bo ZHANG, Xuemei LI, Wenqi ZHU. Preparation and Photocatalytic Properties of Novel Composite CdIn2S4/ZnIn2S4 Heterojunction[J]. Acta Materiae Compositae Sinica.

新型复合CdIn2S4/ZnIn2S4异质结的制备及其光催化性能

基金项目: 山东省自然科学基金面上项目(ZR2020MD115);国家级大学生创新创业训练计划项目(202110430028);山东省大学生创新创业训练计划项目(S202210430014)
详细信息
    通讯作者:

    李雪梅,博士,教授,硕士生导师,主要从事纳米材料光电催化水处理等方面的研究。 E-mail:ch1889 l@sdjzu.edu.cn

  • 中图分类号: TQ028.8

Preparation and Photocatalytic Properties of Novel Composite CdIn2S4/ZnIn2S4 Heterojunction

Funds: General program of Shandong Natural Science Foundation (ZR2020MD115); National undergraduate innovation and entrepreneurship training program (202110430028); Shandong University Student Innovation and Entrepreneurship Training Program (S202210430014)
  • 摘要: 探索高效、稳定的光催化剂是实现实用化太阳能光催化降解污染物的永恒追求。具有二维超薄层状结构的ZnIn2S4表现出优异的性能,不仅具有高能带结构,而且还具有优异的光学性质。此外,ZnIn2S4的制备简单,超薄的ZnIn2S4可以很容易地附着在半导体表面。然而,由于光催化时ZnIn2S4具有较高的电荷复合效率,导致活性很低。半导体之间结合构建异质结的方法可以有效抑制光生电荷的复合。例如,具有层次化的CdIn2S4/石墨烯纳米异质结构已经被制备成作为太阳能制氢的光催化剂。因此,构建异质结是减少光生电荷复合的一种有效途径。本文采用一种简便的无模板化学共沉淀法在160°C下制备了CdIn2S4/ZnIn2S4-1,然后在500°C经管式炉退火得到CdIn2S4/ZnIn2S4-2。以亚甲基蓝为污染物,研究了异质结材料在可见光下的光催化性能,可见光光源下对亚甲基蓝90min降解率为96.7%。为了研究电子-空穴对的分离和迁移,还进行了暂态光电流响应测试和电化学阻抗谱(EIS)测试了光电化学性质。最后,根据自由基淬灭实验结果提出了可能的降解机制。

     

  • 图  1  (a)-(f)材料SEM图;(g)CdIn2S4/ZnIn2S4-2的元素面扫图

    Figure  1.  (a)-(f) Material SEM diagram; (g) Element surface scanning diagram of CdIn2S4/ZnIn2S4-2

    图  2  (a)X射线衍射谱图,(b)CdIn2S4/ZnIn2S4-2的吸附-脱附等温线

    Figure  2.  (a)X-ray diffraction spectrum,(b)Adsorption desorption isotherm of CdIn2S4/ZnIn2S4-2

    图  3  CdIn2S4-1、CdIn2S4-2、ZnIn2S4-1、ZnIn2S4-2、CdIn2S4/ZnIn2S4-1和CdIn2S4/ZnIn2S4-2复合材料的紫外-可见漫反射光谱(a),Tanc plot (b)

    Figure  3.  (a) UV-visible diffuse reflection spectrum, (b) Tanc plot of CdIn2S4-1、CdIn2S4-2、ZnIn2S4-1、ZnIn2S4-2、CdIn2S4/ZnIn2S4-1 and CdIn2S4/ZnIn2S4-2 composite material

    图  4  CdIn2S4/ZnIn2S4-2的XPS表征

    Figure  4.  XPS Characterization of CdIn2S4/ZnIn2S4-2

    图  5  (a)不同材料在可见光照射下的光催化降解曲线, (b)CdIn2S4/ZnIn2S4-2降解 MB的UV-Vis光谱随光照时间的变化, (c) 不同材料光催化降解MB的动力学(C0C分别为污染物的初始浓度和降解反应过程中某时刻的浓度), (d)相应的反应常数k

    Figure  5.  (a) Photocatalytic degradation curve of different materials under visible light irradiation, (b) UV Vis spectrum of CdIn2S4/ZnIn2S4-2 degrading MB changes with light time, (c) kinetics of photocatalytic degradation of MB by different materials (C0 and C are the initial concentration of pollutants and the concentration at a certain time during the degradation reaction) (d) corresponding reaction constant k

    图  6  CdIn2S4-2、ZnIn2S4-2、和CdIn2S4/ZnIn2S4-2复合材料的电化学表征: (a)SPC, (b)EIS

    Figure  6.  Electrochemical Characterization of CdIn2S4-2、ZnIn2S4-2 and CdIn2S4/ZnIn2S4-2 composite material (a)SPC, (b)EIS

    图  7  (a)自由基抑制剂的影响,(b)和(c)CdIn2S4/ZnIn2S4-2原位EPR光谱,(d)稳定性分析,(e)CdIn2S4/ZnIn2S4-2反应前后XRD;(f)亚甲基蓝去除率Fig. 7(a) Effect of free radical inhibitor, (b) and (c) CdIn2S4/ZnIn2S4-2 in-situ EPR spectrum, (d) stability analysis, (e) XRD before and after CdIn2S4/ZnIn2S4-2 reaction; (f) Methylene blue removal rate

    图  8  CdIn2S4/ZnIn2S4-2的光催化反应机制

    Figure  8.  Photocatalytic reaction mechanism of CdIn2S4/ZnIn2S4-2

    表  1  CdIn2S4/ZnIn2S4 EDS能谱

    Table  1.   CdIn2S4/ZnIn2S4 EDS

    AtonicCdZnInS
    CdIn2S4/ZnIn2S4-1 9.94%3.93%55.19%30.94%
    CdIn2S4/ZnIn2S4-210.06%3.84%55.18%30.92%
    下载: 导出CSV
  • [1] TANG T, LU G N, WANG W J, et al. Photocatalytic removal of organic phosphate esters by TiO2: effect of inorganic ions and humic acid[J]. Chemosphere:Environmental Toxicology and Risk Assessment,2018,206(Sep.):26-32.
    [2] G M J, LOUISE L, TOMMY H, et al. Crystalline ZnO photocatalysts prepared at ambient temperature: influence of morphology on p-nitrophenol degradation in water[J]. Catalysts,2021,11(10):1182. doi: 10.3390/catal11101182
    [3] WANG D, SU B, JIANG Y, et al. Polytype 1 T/2 H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2017,330:102-108. doi: 10.1016/j.cej.2017.07.126
    [4] PING Z, LINA Z, ENLAI D, et al. Synthesis of CaIn2S4/TiO2 heterostructures for enhanced uv–visible light photocatalytic activity[J]. Journal of Alloys and Compounds,2021,885:885.
    [5] TIAN B, XUE W, YAN D, et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap[J]. Inorganic Chemistry, 2020, 59(9)
    [6] PENG D X, WANG Y T, SHI H F, et al. Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytichydrogen evolution and pollutant degradation[J]. Journal of Colloid and Interface Science,2021,613:194-206.
    [7] MIN Y, YU Y, ZHOU L, et al. Ligand and hard base assisted preparation of agins single phase nanocrystals for enhancing the photocatalytic activity of TiO2[J]. Journal of Physics D:Applied Physics,2021,54(37):375101. doi: 10.1088/1361-6463/ac0c4d
    [8] WENG R G, FENG T, YU Z D, et al. Efficient mineralization of tbbpa via an integrated photocatalytic reduction/oxidation process mediated by MoS2/SnIn4S8 photocatalyst[J]. Chemosphere,2021,285:131542. doi: 10.1016/j.chemosphere.2021.131542
    [9] WANG Y, LIU M, WANG C, et al. Hollow nanoboxes Cu2-xS@ZnIn2S4 core-shell S-scheme heterojunction with broad- spectrum response and enhanced photothermal-photocatalytic performance[J]. Small,2022,18:2202544. doi: 10.1002/smll.202202544
    [10] HE Y, CHEN C, LIU Y, et al. Quantitative evaluation of carrier dynamics in full-spectrum responsive metallic ZnIn2S4 with indium vacancies for boosting photocatalytic CO2 reduction[J]. National Science Review,2022,22:4970-4978.
    [11] HAN G, LIU X, CAO Z, et al. Photocatalytic pinacol C-C coupling and jet fuel precursor production on ZnIn2S4 nanosheets[J]. ACS Catalysis,2020,10:9346-9355. doi: 10.1021/acscatal.0c01715
    [12] JIN P, WANG L, MA X, et al. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride[J]. Applied Catalysis B:Environmental,2021,284:119762. doi: 10.1016/j.apcatb.2020.119762
    [13] HE Y Q, RAO H, SONG K P, et al. 3 D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction[J]. Advanced Theory and Simulations,2019,29:1905153.
    [14] WANG S B, GUAN B Y, LOU X W. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society,2018,140:5037-5040. doi: 10.1021/jacs.8b02200
    [15] CHEN W, CHANG L, REN S B, et al. Direct Z-scheme 1 D/2 D WO2.72 /ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal[J]. Journal of Hazardous Materials,2020,384:121308. doi: 10.1016/j.jhazmat.2019.121308
    [16] ZHU T T, YE X J, ZHANG Q Q, et al. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid[J]. Journal of Hazardous Materials,2019,367:277-285. doi: 10.1016/j.jhazmat.2018.12.093
    [17] SWAIN G, SULTANA S, PARIDA K, et al. One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p-n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation[J]. Inorganic Chemistry,2019,58:9941-9955. doi: 10.1021/acs.inorgchem.9b01105
    [18] YU X D, QU X S, GUO Y H, et al. Photocatalytic dye methyl orange decomposition on ternary sulfide (CdIn2S4) under visible-light[J]. Chin Chem Lett,2005,16:1259-1262.
    [19] WANG W J, NG T W, HO W K, et al. CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic in activation mechanisms[J]. Applied Catalysis B Environmental,2013,129:482-490. doi: 10.1016/j.apcatb.2012.09.054
    [20] CHEN, HUANG, TING, et al. Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity[J]. Journal of Hazardous Materials,2016,320:529-538. doi: 10.1016/j.jhazmat.2016.08.025
    [21] MAHADADALKAR M A, KALE S B, KALUBARME R S, et al. Architecture of the CdIn2S4 /graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery[J]. RSC Advances,2016,6(41):34724-34736. doi: 10.1039/C6RA02002J
    [22] QIU P X, YAO J H, CHEN H, et al. Enhanced visible-lightphotocatalytic decomposition of 2, 4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials,2016,317:158-168. doi: 10.1016/j.jhazmat.2016.05.069
    [23] NG B J, PUTRI L K, KONG X Y, et al. Z-scheme photocatalytic systems for solar water splitting[J]. Advanced Science,2020,7:1903171. doi: 10.1002/advs.201903171
    [24] CHEN S, VEQUIZO J J M. , PAN Z, et al. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting[J]. Journal of the American Chemical Society,2021,143:10633-10641. doi: 10.1021/jacs.1c03555
    [25] HAN S, LI B, HUANG L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light[J]. Chinese Journal of Structural Chemistry,2022,41(1):7-13.
    [26] ALSHEHERI S Z, MOHAMED R M. Z-scheme mesoporous CdIn2S4 /g-C3N4 heterojunction for enlarged photocatalytic efficiency utilizing visible-light illumination[J]. Optical Materials,2022,123:111964.
    [27] WANG X, WANG X, HUANG J, et al. Interfacial chemical bond and internal electric field modulated z-scheme SV-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution[J]. Nature Publishing Group,2021,12(1):4112-4112.
    [28] ZHANG G, SUN J, CHEN D, et al. Hierarchical core-shell heterostructures of ZnIn2S4 nanosheets on electrospun In2O3 nanofibers with highly enhanced photocatalytic activity[J]. Journal of Hazardous Materials,2020,398:122889. doi: 10.1016/j.jhazmat.2020.122889
    [29] MA Y, CUI J, YIN M, et al. Enhancement of visible light driven dye degradation and photocatalytic H2 evolution over MoS2 through combination with perylene diimide aggregates[J]. New Journal of Chemistry,2021,45(32):14432-14433. doi: 10.1039/D1NJ01999F
    [30] MANJIRI, A. , MAHSFSFSLKAR, et al. Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel[J]. Journal of Materials Chemistry,2018,6(33):16064-16073. doi: 10.1039/C8TA03398F
    [31] MA D, SHI J W, ZOU Y, et al. Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production[J]. Nanoscale,2018,10:7860-7870. doi: 10.1039/C8NR00170G
    [32] FAN L, GUO R. Fabrication of novel CdIn2S4 hollow spheres via a facile hydrothermal process[J]. Journal of Physical Chemistry C,2008,112:10700-10706. doi: 10.1021/jp8022259
    [33] ZHANG B, SHI H, HU X, et al. A novel s-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity[J]. Journal of Physics D:Applied Physics,2020,53(20):205101. doi: 10.1088/1361-6463/ab7563
    [34] SUN M, ZHAO X, ZENG Q, et al. Facile synthesis of hierarchical ZnIn2S4/ CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity[J]. Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2017,407(Jun.15):328-336.
    [35] ZHANG B, LI X M, MA Y S, et al. Visible-light photoelectrocatalysis/H2O2 synergistic degradation of organic pollutants by a magnetic Fe3O4@SiO2@mesoporous TiO2 catalyst-loaded photoelectrode[J]. RSC Advances,2022,12:30577-30587. doi: 10.1039/D2RA05183D
    [36] KOMTCHOU S, DIRANY A, DROGUI P, et al. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes[J]. Water Research,2017,125:91-103. doi: 10.1016/j.watres.2017.08.036
    [37] CHEN F, YANG Q, WANG Y, et al. Novel ternary heterojunction photcocatalyst of ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant[J]. Applied Catalysis B:Environmental,2017,205:133-147. doi: 10.1016/j.apcatb.2016.12.017
    [38] ZHOU C, LAI C, HUANG D, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven[J]. Applied Catalysis B:Environmental,2018,220:202-210. doi: 10.1016/j.apcatb.2017.08.055
    [39] YAN X, WANG B, ZHAN J, et al. Hierarchical columnar ZnIn2S4/ BiVO4 z-scheme heterojunctions with carrier highway boost photocatalytic mineralization of antibiotics[J]. Chemical Engineering Journal,2023,452:139271. doi: 10.1016/j.cej.2022.139271
    [40] LIANG Q, GAO W, LIU C, et al. A novel 2 D/1 D core-shell heterostructures coupling mof-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity[J]. Journal of Hazardous Materials,2020,392:122500. doi: 10.1016/j.jhazmat.2020.122500
  • 加载中
计量
  • 文章访问数:  121
  • HTML全文浏览量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-03-05
  • 录用日期:  2023-03-11
  • 网络出版日期:  2023-03-29

目录

    /

    返回文章
    返回