留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能

鞠泽辉 王志强 张海洋 郑维 束必清

鞠泽辉, 王志强, 张海洋, 等. 3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 鞠泽辉, 王志强, 张海洋, 等. 3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
JU Zehui, WANG Zhiqiang, ZHANG Haiyang, et al. Thermal and mechanical properties of polyethylene glycol modified lignin/polylactic acid biocomposites for 3D printing[J]. Acta Materiae Compositae Sinica.
Citation: JU Zehui, WANG Zhiqiang, ZHANG Haiyang, et al. Thermal and mechanical properties of polyethylene glycol modified lignin/polylactic acid biocomposites for 3D printing[J]. Acta Materiae Compositae Sinica.

3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能

基金项目: 南京林业大学科研启动基金(163020342);青蓝工程
详细信息
    通讯作者:

    鞠泽辉,博士,讲师,研究方向为生物质复合材料 E-mail: juzehui@njfu.edu.cn

  • 中图分类号: TB332

Thermal and mechanical properties of polyethylene glycol modified lignin/polylactic acid biocomposites for 3D printing

Funds: Start-up Funds for Scientific Research at the Nanjing Forestry University (163020342); Qing Lan Project
  • 摘要: 聚乳酸(PLA)是一种绿色可再生的、可降解的高分子材料,被认为是目前商业化程度最高的材料。然而,PLA材料主链结构的刚性决定了PLA的冲击强度弱、断裂伸长率低,限制了其在广泛领域的应用。本研究提出了一种双螺杆挤压法制备PLA和聚乙二醇(PEG)修饰木质素生物复合材料的方法,以期能够提升3D打印木质素/PLA复合材料的力学性能,拓展应用领域。对PEG修饰木质素的结构进行了初步研究。研究不同含量的碱木质素和PEG修饰木质素对PLA复合材料的物理力学性能、微观结构、热学性能和降解性能的影响。实验结果表明,采用酸催化PEG脱木质素的工艺能够将PEG接枝到木质素上,同时能够提高木质素的热性能。PEG修饰木质素的加入提高了聚乳酸复合材料的耐热性。与L30/PLA相比,PL30/PLA的拉伸应力和断裂伸长率分别提高了18.1%和81.9%。与纯聚乳酸相比,复合材料在水系统中具有更好的降解率,特别是在碱性介质中。因此,PEG修饰木质素不仅提高了木质素的附加值,而且为高性能PLA复合材料的生产提供了新的途径。

     

  • 图  1  不同木质素样品的FTIR光谱:(a) 4000 - 600 cm−1;(b) 2000 - 600 cm−1

    Figure  1.  FTIR spectra for different lignin samples:(a) lignins within 4000-400 cm−1;(b) lignins within 2000-400 cm−1

    图  2  不同木质素样品的分子分布色谱图

    Figure  2.  Molecular distribution chromatograms for different lignin samples

    图  3  不同样品的(a)TG和(b) DTG的(碱木质素、聚乳酸(PLA)修饰木质素、PLA、L30/PLA和PL30/PLA)曲线,(c)TG和(d) DTG的(L10/PLA、L20/PLA、PL10/PLA和PL20/PLA)曲线

    Figure  3.  (a) TG and (b) DTG curves of soda lignin, PEG-modified lignin, Polylactic acid (PLA), L30/PLA and PL30/PLA; (c) TG and (d) DTG curves of L10/PLA, L20/PLA, PL10/PLA and PL20/PLA

    图  4  PLA和木质素/PLA复合材料的DSC分析图

    Figure  4.  DSC thermograms of PLA and lignin/PLA composites

    图  5  PLA和木质素/PLA复合材料的力学性能

    Figure  5.  Mechanical properties of PLA and lignin/PLA composites

    图  6  (a) PLA, (b) L10/PLA, (c) L20/PLA, (d) L30/PLA, (e) PL10/PLA, (f) PL20/PLA和(g) PL30/PLA的SEM图像

    Figure  6.  SEM images of (a) PLA, (b) L10/PLA, (c) L20/PLA, (d) L30/PLA, (e) PL10/PLA, (f) PL20/PLA and (g) PL30/PLA0

    图  7  (a)不同木质素含量PLA在50天内的吸水率和(b)在不同溶剂介质中50天的降解率

    Figure  7.  (a)Water absorption of PLA with various lignin contents over 50 days and (b)degradation in different solvent media over 50 days

    表  1  生物复合材料的组成

    Table  1.   The composition of the biocomposites

    Samples PLA/wt% Soda lignin /wt% PEG-modified
    lignin /wt%
    PLA 100
    L10/PLA 90 10
    L20/PLA 80 20
    L30/PLA 70 30
    PL10/PLA 90 10
    PL20/PLA 80 20
    PL30/PLA 70 30
    Note: L-Soda lignin; PL- PEG-modified lignin
    下载: 导出CSV

    表  2  木质素产率和木质素组分

    Table  2.   Lignin yield and carbohydrate compositions of the lignin fraction

    SamplesYield/wt%Compositions/wt%
    AILGlcXylAraGalRhaGalAGlcATotal
    Soda lignin11.44 ± 1.4996.14 ± 1.720.74 ± 0.110.09 ± 0.01---0.22 ± 0.020.16 ± 0.011.13 ± 0.06
    PEG-modified lignin10.08 ± 1.0489.12 ± 1.480.47 ± 0.02----0.18 ± 0.010.12 ± 0.010.75 ± 0.01
    Note: PEG is polyethylene glycol; AIL is acid insoluble lignin, Glc is glucose, Xyl is Xylose, Ara is arabinose, Gal is Galactose, Rha is Rhamnose, GalA is galacturonic acid, GlcA is glucuronic acid, - Not detected
    下载: 导出CSV

    表  3  木质素的重量-平均分子量(Mw)、数量-平均分子量(Mn)和Mw/Mn

    Table  3.   Weight-Average Molecular Weight (Mw), Number-Average Molecular Weight (Mn), and Mw/Mn of Lignins

    Samples Mw Mn Mw/Mn
    Soda lignin 712 ± 11 519 ± 7 1.37 ± 0.04
    PEG-modified lignin 1184 ± 12 795 ± 8 1.49 ± 0.03
    下载: 导出CSV

    表  4  不同样品的热性能

    Table  4.   Thermal properties of different samples

    Samples Soda lignin PEG-modified lignin PLA L10/PLA L20/PLA L30/PLA PL10/PLA PL20/PLA PL30/PLA
    Tdst /°C 146.8 271.5 295.6 244.1 213.5 208.9 280.1 286.1 288.1
    Tdmax /°C 336.7 393.4 357.8 314.6 293.1 289.1 336.4 340.1 342.1
    Residue /% 42.55 34.03 - 3.39 7.58 9.71 0.15 5.92 3.61
    Note: Tdst is the degradation starting temperature, Tdmax is the maximum weight loss temperature
    下载: 导出CSV

    表  5  PLA和木质素/PLA复合材料的转变温度和焓

    Table  5.   Transition temperatures and enthalpies of PLA and lignin/PLA composites

    Samples Tg/°C Tcc/°C Hcc/(J·g−1) Tm/°C Hm/(J·g−1) Xc/%
    PLA 59.4 119.3 9.3 152.9 15.3 6.41
    L10/PLA 61.3 116.9 24.8 156.5 33.6 9.39
    L20/PLA 59.2 112.3 25.2 155.4 37.3 12.91
    L30/PLA 58.8 109.4 18.8 151.1 24.3 5.87
    PL10/PLA 62.3 122.5 12.5 153.6 18.4 6.30
    PL20/PLA 62.6 121.6 15.2 154.1 19.2 4.27
    PL30/PLA 61.6 118.0 16.9 155.3 20.8 4.16
    Note: Tg is the glass transition temperature, Tcc is the cold crystallization temperature, Hcc is the recrystallization enthalpy, Tm is the melting temperature, Hm is the melting enthalpy, Xc is crystallinity
    下载: 导出CSV

    表  6  本研究与相关文献的力学性能的对比分析

    Table  6.   Comparative analysis for mechanical properties of this study and previous studies

    Sample Tensile strength/MPa Elongation at break/% Tensile modulus/GPa References
    PLA : Soda lignin = 80wt% : 20wt%) 33.2 1.3 / Ye, et al.[10]
    PLA : Soda lignin = 80wt% : 20wt% 39.4 / 2.5 Tanase-Opedal, et al.[11]
    PLA_L20_P2(PLA :Soda lignin : PEG=
    78wt% : 20wt% : 2wt%)
    50.84 ≈4.1 ≈2.1 Wasti, et al.[16]
    PLA_L20_P5(PLA : Soda lignin : PEG=
    75wt% : 20wt% : 5wt%)
    42.39 3.98 ≈1.7
    PLA : Poplar powder = 90wt% : 10wt% ≈1.2 / / GE, et al.[26]
    PLA : Poplar powder = 80wt% : 20wt% ≈6.4 / /
    PLA : Poplar powder = 70wt% : 30wt% ≈4.9 / /
    PLA:nano-cellulose = 95wt% : 5wt% ≈55 / 3.9—4.1 Matea, et al.[27]
    PLA:jute fiber = 70wt% : 30wt% 51.35 / 2.25 Das, et al.[28]
    PLA:flax fiber = 70wt% : 30wt% 45.67 / 2.01
    PL10/PLA 61.55 6.72 3.67 In this study
    PL20/PLA 57.84 5.71 3.75
    PL30/PLA 50.31 3.94 3.97
    下载: 导出CSV
  • [1] SWETHA TR, ANANTHI V, BORA A, et al. A review on biodegradable polylactic acid (PLA) production from fermentative food waste - Its applications and degradation[J]. International Journal of Biological Macromolecules, 2023, 234: 123703. doi: 10.1016/j.ijbiomac.2023.123703
    [2] WASTI S, ADHIKARI S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review[J]. Frontiers in Chemistry, 2020, 8: 1-14. doi: 10.3389/fchem.2020.00001
    [3] BAJWA D-S, POURHASHEM G, ULLAH A-H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops and Products, 2019, 139: 111526. doi: 10.1016/j.indcrop.2019.111526
    [4] 黄宸超, 刘朝政, 杨蕊, 等. 熔融沉积打印微纳米生物质填料增强聚乳酸基复合材料的研究进展 [J/OL]. 复合材料学报, 2023, 1-19.

    HUANG chenchao, LIU chaozheng, YANG rui, et al. Research progress of biomass-based micro-nano filler reinforcing polylactic acid matrix composites printed by fused deposition modeling [J/OL]. Acta Materiae Compositae Sinica, 2023, 1-19(in Chinese).
    [5] WANG Y, HOU J, HUANG Y, et al. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties[J]. International Journal of Biological Macromolecules, 2022, 194: 1002-1009. doi: 10.1016/j.ijbiomac.2021.11.159
    [6] 花蕾, 沈敏君. PLLA与sPCLPLLA星型嵌段共聚物结晶行为研究[J]. 现代塑料加工应用, 2016, 28(2): 20-24.

    HUA lei, SHEN minjun. Crystallization Behavior of Poly(L-lactide) and Star Shaped Poly(E-caprolactone-block-l-lactide) Blends[J]. Modern Plastics Processing and Applications, 2016, 28(2): 20-24(in Chinese).
    [7] 闫承琳, 刘东, 刘子昕, 等. 基于木塑基耗材的增材制造技术研究进展[J]. 林业工程学报, 2022, 7(4): 22-30.

    YAN chenglin, LIU dong, LIU zixin, et al. Research progress of additive manufacturing technology and equipment for wood-plastic consumables[J]. Journal of Forestry Engineering, 2022, 7(4): 22-30(in Chinese).
    [8] 刘杰, 赵雪松, 李奇, 等. 聚丁二酸丁二醇酯对聚乳酸基木塑复合材料性能的影响 [J/OL]. 复合材料学报, 2023, 1-10.

    LIU jie, ZHAO xuesong, LI qi, et al. Effect of polybutylene succinate on properties of polylactic acid-based wood-plastic composites [J/OL]. Acta Materiae Compositae Sinica, 2023, 1-10(in Chinese).
    [9] 左迎峰, 李文豪, 李萍, 等. 竹纤维/聚乳酸可降解复合材料的增塑改性[J]. 林业工程学报, 2018, 3(01): 77-82.

    ZUO yingfeng, LI wenhao, LI ping, et al. Plasticization of bamboo fiber/polylactic acid degradable composite[J]. Journal of Forestry Engineering, 2022, 7(04): 22-30(in Chinese).
    [10] YE H, HE Y, LI H, et al. 3D-Printed Polylactic Acid/Lignin Films with Great Mechanical Properties and Tunable Functionalities towards Superior UV-Shielding, Haze, and Antioxidant Properties[J]. Polymers, 2023, 15: 2806. doi: 10.3390/polym15132806
    [11] TANASE-OPEDAL M, ESPINOSA E, RODRGUEZ A, et al. Lignin: a biopolymer from forestry biomass for biocomposites and 3D printing[J]. Materials, 2019, 12: 1-15.
    [12] 李园媛. 聚乳酸/木质素复合材料的制备与性能研究[J]. 塑料科技, 2020, 48(6): 82-84.

    LI yuanyuan. Study on Preparation and Properties of Polylactic Acid/Lg Composites[J]. Plastics science and technology, 2020, 48(6): 82-84(in Chinese).
    [13] 刘洋. 木质素含量对PLA基复合材料强韧性的影响[J]. 塑料科技, 2020, 48(4): 71-74.

    LIU yang. Effect of Lignin Content on Strength and Toughness of PLA-based Composites[J]. Plastics science and technology, 2020, 48(4): 71-74(in Chinese).
    [14] KIM Y, SUHR J, SEO HW, et al. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid)[J]. Scientific Reports, 2017, 7: 43596. doi: 10.1038/srep43596
    [15] GORDOBIL O, EGUES I, LABIDI J. Modification of Eucalyptus and Spruce organosolv lignins with fatty acids to use as filler in PLA[J]. Reactive and Functional Polymers, 2016, 104: 45-52. doi: 10.1016/j.reactfunctpolym.2016.05.002
    [16] WASTI S, TRIGGS E, FARAG R, et al. Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing[J]. Composites Part B:Engineering, 2021, 205: 108483. doi: 10.1016/j.compositesb.2020.108483
    [17] FENG Y, LAN J, MA P, et al. Chemical structure and thermal properties of lignin modified with polyethylene glycol during steam explosion[J]. Wood Science and Technology, 2017, 51: 135-150. doi: 10.1007/s00226-016-0870-9
    [18] NAKAGAME S, CHANDRA R-P, KADLA J-F, et al. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose[J]. Bioresource Technology, 2011, 102: 4507-4517. doi: 10.1016/j.biortech.2010.12.082
    [19] JU Z, ZIEGLER-DEVIN I, CHRUSCIEL L, et al. Efficient preparation of polyethylene glycol (PEG)-modified lignin from steam exploded hardwood biomass[J]. Industrial crops and products, 2023, 26: 117614.
    [20] MIGNEAULT S, KOUBAA A, ERCHIDUI F, et al. Effects of processing method and fiber size on the structure and properties of wood-plastic composites[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40: 80-5. doi: 10.1016/j.compositesa.2008.10.004
    [21] HE Q, ZIEGLER-DEVIN I, CHRUSCIEL L, et al. Lignin-First Integrated Steam Explosion Process for Green Wood Adhesive Application[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 5380-5392.
    [22] 左迎峰, 张彦华, 乔治邦, 等. 甘油用量对淀粉/聚乳酸复合材料热性能的影响[J]. 材料导报, 2014, 28(12): 63-65+69.

    ZUO yingfeng, ZHANG yanhua, QIAO zhibang, et al. Effects of Glycerol Amount on the Thermal Properties of Starch/Polylactic Acid Composites[J]. Materials Reports, 2014, 28(12): 63-65+69(in Chinese).
    [23] 熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819.

    XIONG xingquan, ZHANG hui, GAO lizhu. Progress in Chemical Modification and Application of Lignin[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819(in Chinese).
    [24] 欧阳琛, 沈人杰, 陈心茹, 等. 聚乳酸共混木质素静电纺丝特性与材料性能[J]. 纤维素科学与技术, 2022, 30(3): 1-10.

    OU yangchen, SHEN renjie, CHEN xinru, et al. Electrospinning Characteristics and Properties of Polylactic Acid Blended Lignin Composites[J]. Journal of Cellulose Science and Technology, 2022, 30(3): 1-10(in Chinese).
    [25] 刘太闯, 宋修德, 姚亮, 等. 不同稳定剂和单体对PLA稳定性及力学性能的影响[J]. 上海塑料, 2022, 50(6): 31-35.

    LIU taichuang, SONG xiude, YAO liang, et al. Effect of Different Stabilizer and Monomer on the Stability and Mechanical Properties of PLA[J]. Shanghai Plastics, 2022, 50(6): 31-35(in Chinese).
    [26] 葛正浩, 邹辛祺, 陈威, 等. PLA/杨木粉木塑复合材料的配方优化与力学性能研究[J]. 陕西科技大学学报, 2020, 38(1): 124-130+163.

    GE zhenghao, ZOU xinqi, CHEN wei, et al. Research on formula optimization and mechanical properties of PLA/Poplar Powder Wood-Plastic Composites[J]. Journal of Shaanxi University of Science & Technology, 2020, 38(1): 124-130+163(in Chinese).
    [27] MATEA P, ROBERT P, CHRISTIAN P. Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid)[J]. European Polymer Journal, 2019, 114: 426-433. doi: 10.1016/j.eurpolymj.2019.03.014
    [28] DAS P P, CHAUDHARY V, AHMAD F, et al. Effect of nanotoxicity and enhancement in performance of polymer composites using nanofillers: A state-of-the-art review[J]. Polymer Composites, 2021, 42(5): 2152-2170. doi: 10.1002/pc.25968
    [29] 徐佳, 李园, 冯昆鹏, 等. 聚乳酸/芦苇纤维复合材料降解性能研究[J]. 中国塑料, 2023, 37(4): 23-29.

    XU jia, LIyuan, FENG kunpeng, et al. Study on degradation properties of poly(lactic acid)/reed fiber composites[J]. China Plastics, 2023, 37(4): 23-29(in Chinese).
    [30] 吕东阳, 陈利, 王静. 玻璃纤维及偶联剂对聚乳酸降解性能的影响 [J/OL]. 复合材料学报, 2024, 1-8.

    LYU Dongyang, CHEN Li, WANG Jing. Effect of glass fibers and coupling agents on the degradation properties of polylactic acid [J/OL]. Acta Materiae Compositae Sinica, 2024, 1-8(in Chinese).
  • 加载中
计量
  • 文章访问数:  78
  • HTML全文浏览量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-01-29
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-03-22

目录

    /

    返回文章
    返回