Assessment of damage prediction models for composite laminates under low-velocity impact
-
摘要: 针对碳纤维复合材料层合板低速冲击损伤的预测问题,采用数值模拟方法从结构外部力学响应、内部损伤状态两个方面,探讨三种损伤起始准则和三种演化方法对其影响。建立了分析层合板冲击问题的三维有限元模型,设计了包含起始判定、渐进演化及本构关系的损伤计算流程。研究了冲击过程损伤面积定量演变,为阐释损伤机制提供新视角。结合实验数据对冲击损伤数值模型进行了验证,并对不同起始准则、演化方法的预测能力进行了评价探讨。结果表明,数值预测与实验测试的动态力学响应曲线吻合度较高,证明该数值模型能够准确预测低速冲击损伤。同时发现起始准则与演化方法的结合对损伤模型预测性能十分关键,Hashin-Strain准则结合线性等效应变方法(Hashin-Strain-E1)和Puck准则结合指数型等效位移方法(Puck-E3)最优。然而,当Hashin-Strain准则结合线性或指数型等效位移方法时(Hashin-Strain-E2/E3),会由于刚度退化严重而引发穿透性损伤。研究成果为复合材料层合板低速冲击损伤预测与评估提供参考和借鉴。Abstract: For the prediction of low-velocity impact damage in carbon fiber composite laminates, this study examined the influence of three damage initiation criteria and three evolution methods from structural overall mechanical response and internal damage state. To facilitate our investigation, a three-dimensional finite element model analyzing the impact behavior of laminate was established. Subsequently, a damage calculation process encompassing initiation determination, progressive evolution, and constitutive relationship was designed. Additionally, the quantitative evolution of damage area during impact was studied, which provided a new perspective for elucidating the damage mechanism. Based on experimental data, the accuracy of numerical simulation was verified. Then the prediction capabilities of different initiation criteria and evolution methods were evaluated and discussed. The results show that the numerical prediction agrees well with the experiment in dynamic mechanical response curve. This proves the numerical model can accurately predict the impact damage. Meanwhile, it has been found that the combination of initiation criteria and evolution methods significantly impacts the predictive efficacy of damage models. The pairing of the Hashin-Strain criterion with the linear equivalent strain method (Hashin-strain-E1) and the Puck criterion with the exponential equivalent displacement method (Puck-E3) yields optimal results. However, coupling the Hashin-Strain criterion with either the linear or exponential equivalent displacement method (Hashin-strain-E2/E3) can lead to penetrating damage due to severe degradation in stiffness. These research findings offer valuable insights into predicting low-velocity impact damage in composite laminates.
-
Key words:
- Keywords: laminate /
- low-speed impact /
- initiation criterion /
- evolution method /
- damage prediction
-
图 2 渐进演化方法中应力、损伤变量与位移的关系
Figure 2. Relationship between stress, damage variables and displacement in progressive evolution methods
$ {\delta }_{\mathrm{e}\mathrm{q},i} $ and $ {\sigma }_{\mathrm{e}\mathrm{q},i} $ are equivalent displacement and stress; $ {\delta }_{\mathrm{e}\mathrm{q},i}^{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}} $ and $ {\sigma }_{\mathrm{e}\mathrm{q},i}^{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}} $ are initiation equivalent displacement and stress. $ {\delta }_{\mathrm{e}\mathrm{q},i}^{\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}} $ is failure equivalent displacement. $ {d}_{i} $ is damage state variable. $ {G}_{i} $ is fracture energy
图 3 层间单元混合型双线性牵引-分离本构关系
Figure 3. Constitutive relation of the mixed-model bilinear traction-separation for cohesive element
$ {\delta }_{\mathrm{m}}^{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}} $ and $ {\delta }_{\mathrm{m}}^{\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}} $ are initiation and failure equivalent displacement. Model Ⅰ, Ⅱ/Ⅲ are the failure model in out-of-plane direction and in-plane transverse direction. N, S and T are the strength in three directions
表 1 不同损伤模式下的等效位移和等效应力
Table 1. Equivalent displacement and equivalent stress for different damage modes
Modes Equivalent displacement Equivalent stress ft $ \delta _{{\mathrm{eq,ft}}}^{} = {l^{\mathrm{c}}} \cdot \sqrt {{{\left\langle {{\varepsilon _{11}}} \right\rangle }^2} + {{\left( {{\varepsilon _{12}}} \right)}^2} + {{\left( {{\varepsilon _{13}}} \right)}^2}} $ $ \sigma _{{\mathrm{eq,ft}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle {{\sigma _{11}}} \right\rangle \left\langle {{\varepsilon _{11}}} \right\rangle + {\sigma _{12}}{\varepsilon _{12}} + {\sigma _{13}}{\varepsilon _{13}}}}{{\delta _{{\mathrm{eq,ft}}}^{}}} $ fc $ \delta _{{\mathrm{eq,fc}}}^{} = {l^{\mathrm{c}}} \cdot \left\langle { - {\varepsilon _{11}}} \right\rangle $ $ \sigma _{{\mathrm{eq,fc}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle { - {\sigma _{11}}} \right\rangle \left\langle { - {\varepsilon _{11}}} \right\rangle }}{{\delta _{{\mathrm{eq,fc}}}^{}}} $ mt $ \delta _{{\mathrm{eq,mt}}}^{} = {l^{\mathrm{c}}} \cdot \sqrt {{{\left\langle {{\varepsilon _{22}}} \right\rangle }^2} + {{\left\langle {{\varepsilon _{33}}} \right\rangle }^2} + {{\left( {{\varepsilon _{12}}} \right)}^2} + {{\left( {{\varepsilon _{23}}} \right)}^2} + {{\left( {{\varepsilon _{13}}} \right)}^2}} $ $ \sigma _{{\mathrm{eq,mt}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle {{\sigma _{22}}} \right\rangle \left\langle {{\varepsilon _{22}}} \right\rangle + \left\langle {{\sigma _{33}}} \right\rangle \left\langle {{\varepsilon _{33}}} \right\rangle + {\sigma _{12}}{\varepsilon _{12}} + {\sigma _{13}}{\varepsilon _{13}} + {\sigma _{23}}{\varepsilon _{23}}}}{{\delta _{{\mathrm{eq,mt}}}^{}}} $ mc $ \delta _{{\mathrm{eq,mc}}}^{} = {l^{\mathrm{c}}} \cdot \sqrt {{{\left\langle { - {\varepsilon _{22}}} \right\rangle }^2} + {{\left\langle { - {\varepsilon _{33}}} \right\rangle }^2} + {{\left( {{\varepsilon _{12}}} \right)}^2} + {{\left( {{\varepsilon _{23}}} \right)}^2} + {{\left( {{\varepsilon _{13}}} \right)}^2}} $ $ \sigma _{{\mathrm{eq,mc}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle { - {\sigma _{22}}} \right\rangle \left\langle { - {\varepsilon _{22}}} \right\rangle + \left\langle { - {\sigma _{33}}} \right\rangle \left\langle { - {\varepsilon _{33}}} \right\rangle + {\sigma _{12}}{\varepsilon _{12}} + {\sigma _{13}}{\varepsilon _{13}} + {\sigma _{23}}{\varepsilon _{23}}}}{{\delta _{{\mathrm{eq,mc}}}^{}}} $ Notes: < > is Macaulay bracket. $ {\sigma }_{\mathrm{e}\mathrm{q},i} $ and $ {\delta }_{\mathrm{e}\mathrm{q},i} $ is equivalent stress and displacement, where i= ft, fc, mt and mc damage model. $ {l}^{\mathrm{c}} $ is the characteristic length of element. 表 2 T700 GC/M21单向板和界面材料参数
Table 2. Material parameters of unidirectional laminate and interlayer for T700 GC/M21 composite
Laminate properties Density/(kg·m−3) 1600 Young’s modulus/GPa E11 = 130; E22 = E33 = 7.7; G12 = G13 = 4.8; G23 = 3.8 Poisson’s ratio ν12 = ν13 = 0.33; ν23 = 0.35 Strength/MPa XT = 2080 ; XC =1250 ; YT = 60; YC =140; S12 = S13 = S23 = 110Fracture energy/(N·mm−1) Gft = 133; Gfc = 40; Gmt = 0.6 N; Gmc = 2.1 Interlayer properties Elastic modulus/GPa E = 5 Strength/MPa N = S = T = 30 Fracture energy/(N·mm−1) GIC = 0.6; GIIC = 2.1 Power exponent η 1.45 表 3 预测模型能力指标评价
Table 3. Index evaluation for the capability of prediction model
Peak force/kN Max. displacement/mm Impact time/ms Absorbed energy/J Experiment 8.65 5.11 3.60 13.00 Hashin-Stress E1 10.50(+21.4%) 4.72(−7.6%) 3.24(−10% 8.66(−33.4%) Hashin-Strain 8.84(+2.2%) 4.97(−2.7%) 3.70(+2.8%>) 10.03(−22.8%) Puck 11.44(+32.3%) 4.64(−9.2%) 3.11(−13.6%) 8.08(−37.8%) Hashin-Stress E2 8.74(+1.0%) 4.91(−3.9%) 3.70(2.8%) 11.00(−15.4%) Hashin-Strain — — — — Puck 8.62(−0.3%) 4.93(−3.5%) 3.50(−2.8%) 9.44(−27.4%) Hashin-Stress E3 9.40(+8.7%) 4.96(−2.9%) 3.70(+2.8%) 10.60(−18.5%) Hashin-Strain — — — — Puck 7.85(−9.2%) 5.09(−0.4%) 3.70(+2.8%) 9.44(−27.4%) -
[1] 罗忠兵, 张松, 钱恒奎, 等. CFRP复杂几何结构区相控阵超声检测建模与声传播规律[J]. 复合材料学报, 2021, 38(11): 3672-3681.Luo Z B, Zhang S, Qian H K, et al. Modelling and wave propagation behavior of phased array ultrasonic testing on carbon fiber reinforced plastics components with complex geometry[J]. Acta Materia Composite Sinica, 2021, 38(11): 3672-3681(in Chinese). [2] Luo Z B, Zhang Song, Jin Shijie, et al. Heterogeneous ultrasonic time-of-flight distribution in multidirectional CFRP corner and its implementation into total focusing method imaging[J]. Composite Structures, 2022, 294: 115789. doi: 10.1016/j.compstruct.2022.115789 [3] Luo Z B, Kang Jinli, Cao Huanqing, et al. Enhanced ultrasonic total focusing imaging of CFRP corner with ray theory-based homogenization technique[J]. Chinese Journal of Aeronautics, 2023, 36(1): 449-458. [4] Hou YL, Huang J G, Liu Y T, et al. Low-velocity impact and compression after impact behaviors of rib-stiffened CFRP panels: Experimental and numerical study[J]. Aerospace Science & Technology, 2024, 146: 108948. [5] 李英杰, 李继承, 李宁, 等. 纤维增强大块非晶的各向异性压缩力学行为原位实验研究[J]. 兵工学报, 2024, 28(7): 1-12.Li Y J, Li J C, Li N, et al. Research on anisotropic compressive mechanical behavior of fiber reinforced bulk metallic glass composite with in-situ test[J]. Acta Armamentarii, 2024, 28(7): 1-12(in Chinese). [6] 钱奇伟, 张昕, 杨贞军, 等. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别[J]. 复合材料学报, 2024, 41(7): 3536-3543.Qian Q W, Zhang X, Yang Z J, et al. Intelligent identification of micro components and defects of 3D braided C/C composites based on deep learning of X-ray CT images[J]. Acta Materia Composite Sinica, 2024, 41(7): 3536-3543(in Chinese). [7] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6): 1352-1363.Qi J Q, Duan Y C, Te Y, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materia Composite Sinica, 2020, 37(6): 1352-1363(in Chinese). [8] Chang F, Chang K. A progressive damage model for laminated composites containing stress concentrations[J]. Composites Material, 1987, 21: 832-855. [9] Hou J, Petrinic N, Ruiz C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science & Technology, 2001, 61: 2069-2074. [10] Hashin Z. Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics, 1980 47: 329–334. [11] Puck A, Schurmann H. Failure analysis of frp laminates by means of physically based phenomenological models[J]. Composites Science & Technology, 2002, 62: 1633-1662. [12] Liao B B, Liu P F. Finite element analysis of dynamic progressive failure of plastic composite laminates under low velocity impact[J]. Composite Structure, 2017, 159: 567-578. doi: 10.1016/j.compstruct.2016.09.099 [13] Zhou J J, Liu B, Wang S N. Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact[J]. Aerospace Science & Technology, 2022, 129: 107810. [14] Tuo H L, Lu Z X, Ma X P, J, et al. Zhang. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites Part B, 2019, 163: 642-654. doi: 10.1016/j.compositesb.2019.01.006 [15] 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7): 1878-1888.Tuo H L, Ma X P, Lu Z X. A model for low velocity impact damage analysis of composite laminates based on continuum damage mechanics[J]. Acta Materia Composite Sinica, 2018, 35(7): 1878-1888(in Chinese). [16] Long S, Yao X, Zhang X. Delamination prediction in composite laminates under low velocity impact[J]. Composite Structure, 2015, 132: 290-298. doi: 10.1016/j.compstruct.2015.05.037 [17] Lyu Q, Wang B, Guo Z. Predicting post-impact compression strength of composite laminates under multiple low-velocity impacts[J]. Composites Part A, 2023, 164: 107322. doi: 10.1016/j.compositesa.2022.107322 [18] Xu G, Cheng H, Zhang K, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design, 2020, 194: 108904. [19] 张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1): 165-176.Zhang C, Rao Y F, Li Q Q, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materia Composite Sinica, 2021, 38(1): 165-176(in Chinese). [20] 杨姝, 陈鹏宇, 江峰, 等. 内凹弧形蜂窝夹芯板低速弹道冲击试验与数值仿真[J]. 振动与冲击, 2023, 42(6): 255-262.Yang S, Chen P Y, Jang F, et al. Low-speed ballistic impact test and numerical simulation on re-entrant circular honeycomb sandwich panels[J]. Journal of Vibration and Shock, 2023, 42(6): 255-262(in Chinese). [21] Liu P F, Liao B B, Jia L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structure, 2016, 149: 408-422. doi: 10.1016/j.compstruct.2016.04.012 [22] Li X, Ma D, Liu H, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structure, 2019, 207: 727-739. doi: 10.1016/j.compstruct.2018.09.093 [23] Maio L, Monaco E, Ricci F, et al. Simulation of low velocity impact on composite laminates with progressive failure analysis[J]. Composite Structure, 2013, 103: 75-85. doi: 10.1016/j.compstruct.2013.02.027 [24] Zhou J J, Wen P H, Wang S N. Numerical investigation on the repeated low-velocity impact behavior of composite laminates[J]. Composites Part B, 2020, 185: 107771. doi: 10.1016/j.compositesb.2020.107771 [25] Zhou J J, Wen P H, Wang S N. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact[J]. Composite Structure, 2019, 225: 111113. doi: 10.1016/j.compstruct.2019.111113 [26] Samareh-Mousavi S S, Mandegarian S, Taheri-Behrooz F. A nonlinear FE analysis to model progressive fatigue damage of cross-ply laminates under pin-loaded conditions[J]. International Journal of Fatigue, 2019, 119: 290-301. doi: 10.1016/j.ijfatigue.2018.10.010 [27] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136M-15[S]. West Conshohocken: ASTM International, 2015. [28] Tan W, Falzon B G, Chiu L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A, 2015, 71: 212-226. doi: 10.1016/j.compositesa.2015.01.025 [29] Hongkarnjanakul N, Bouvet C, Rivallant S, et al. Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure[J]. Composite Structure, 2013, 106: 549-559. doi: 10.1016/j.compstruct.2013.07.008 [30] Johnson HE, Louca LA, Mouring S, et al. Modelling impact damage in marine composite panels[J]. International Journal of Impact Engineering, 2009, 36: 25-39. doi: 10.1016/j.ijimpeng.2008.01.013 [31] Schwab M, Todt M, Wolfahrt M, et al. Failure mechanism-based modelling of impact on fabric reinforced composite laminates based on shell elements[J]. Composites Science & Technology, 2016, 128: 131-137. [32] Lopes CS, Camanho P, Gürdal Z, et al. Low velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations[J]. Composites Science & Technology, 2009, 69: 926-936.
计量
- 文章访问数: 39
- HTML全文浏览量: 13
- 被引次数: 0