留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能

赵梓帆 熊娟 但智钢

赵梓帆, 熊娟, 但智钢. Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 赵梓帆, 熊娟, 但智钢. Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能[J]. 复合材料学报, 2022, 40(0): 1-11
Zifan ZHAO, Juan XIONG, Zhigang DAN. Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance[J]. Acta Materiae Compositae Sinica.
Citation: Zifan ZHAO, Juan XIONG, Zhigang DAN. Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance[J]. Acta Materiae Compositae Sinica.

Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能

基金项目: 国家重点研发计划项目(2019 YFC1904201)
详细信息
    通讯作者:

    但智钢,博士,研究员,博士生导师,研究方向为工业固废处理与资源化 E-mail: dash_2001@163.com

  • 中图分类号: TB34

Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance

Funds: National Key Research and Development Program of China (2019 YFC1904201);
  • 摘要: 将机械能转换为电能的压电能量收集器可为便携式可穿戴电子器件提供持续、独立的供电方案,促进柔性电子技术向智能化、集成化、多功能化方向发展。论文采用光还原法制备了Ag纳米颗粒修饰的铌酸钾钠(KNN)颗粒并将其与聚偏氟乙烯(PVDF)复合,得到Ag-KNN/PVDF压电复合薄膜。采用热压法在两层PVDF中复合Ag-KNN/PVDF薄膜,得到三明治结构的柔性复合压电薄膜(PAKP)及压电柔性能量收集器。研究结果表明:当Ag修饰量为1mol%时,PAKP柔性复合薄膜的极性β相最大,且压电输出性能最佳,输出电压可达6.39 V,是无Ag修饰样品的1.43倍,器件的最大瞬时功率为150.5 nW。经过3000次循环测试后,器件的电压输出幅度无明显变化。将其固定于自行车车架上,收集自行车行进中的机械能可使220 nF电容在200秒内充电至1.2 V,表明其在低功耗电子器件自供电领域具有良好的应用前景。

     

  • Figure  1.  Manufacturing process of flexible piezoelectric energy harvester based on flexible composite piezoelectric films with sandwich structure (PAKP) composite film

    图  2  (a)水热法制备铌酸钾钠(KNN)的SEM图; (b) 球磨KNN的SEM图; (c) 1 mol%Ag-KNN颗粒的低倍TEM图; (d) 高倍TEM图(插图为相应区域的高分辨TEM图)

    Figure  2.  SEM images potassium sodium niobate (KNN) samples of prepared by hydrothermal method (a) and after ball milling (b); TEM images of Ag-KNN particles with 1% Ag in low magnification (c) and high magnification (d). The insert is the high-resolution TEM image.

    图  3  (a) Ag含量为1 mol%的Ag-KNN样品XPS全谱图; (b)不同Ag含量Ag-KNN样品Ag 3 d高分辨XPS

    Figure  3.  (a) Overall XPS spectra of 1 mol% Ag-KNN; (b) high-resolution XPS spectra of Ag-KNN samples with different Ag amount

    图  4  不同Ag含量的PAKP薄膜表面SEM图:(a) 0 mol%; (b) 0.5 mol%; (c) 1 mol%; (d) 2 mol%; (e) 3 mol%. (f) 1% Ag含量PAKP薄膜截面SEM图

    Figure  4.  SEM images of Ag-KNN/PVDF film with different Ag amount: (a) 0 mol%; (b) 0.5 mol%; (c) 1 mol%; (d) 2 mol%; (e) 3 mol%. (f) cross sectional SEM image of 1 mol% PAKP film.

    图  5  不同Ag含量PAKP复合薄膜极化后的XRD 图谱(a)、FTIR图谱(b)、β相含量变化曲线(c)

    Figure  5.  XRD patterns (a), FTIR spectra (b), Variation of content (c) of PAKP composite films with different Ag amount.

    图  6  外加200 kV/cm电场时薄膜内部的电场分布仿真图:(a) KNN-PVDF复合薄膜; (b) Ag-KNN-PVDF复合薄膜

    Figure  6.  Simulation diagrams of electric field distribution in the film: (a) KNN-PVDF film and (b) Ag-KNN-PVDF film.

    图  7  不同Ag含量的PAKP复合薄膜的漏电流测试图:(a) 0 mol%; (b) 0.5 mol%; (c) 1 mol%; (d) 2 mol%; (e) 3 mol%; (f) 320 kV/cm、1 Hz条件下电滞回线图

    Figure  7.  Leakage current test diagram of PAKP film with different Ag amount: (a) 0 mol%; (b) 0.5 mol%; (c) 1 mol%; (d) 2 mol%; (e) 3 mol%; (f) P-E loops with 320 kV/cm,1 Hz

    图  8  纯PVDF、20%KNN/PVDF及不同Ag含量PAKP复合薄膜:(a) 压电常数d33; (b) 杨氏模量; (c) 介电常数

    Figure  8.  Piezoelectric constant d33 (a), Young’s modulus (b) and dielectric constant (c) of pure PVDF, 20% KNN/PVDF and PAKP films with different Ag nanoparticles amount.

    图  9  不同结构PVDF复合压电能量收集器:(a) 开路电压; (b) 短路电流; (c) 1% Ag-PAKP复合压电能量收集器在加速度为1~5g作用时的电压输出; (d) 1% Ag-PAKP压电能量收集器的正反接测试

    Figure  9.  Open-circuit voltage (a), short-circuit current (b) of PAKP piezoelectric energy harvester (PEH) with different Ag amount; (c) Voltage output of 1% Ag-PAKP PEH by 1~5g acceleration; (d) forward and backward connection.

    10  PAKP复合压电能量收集器的输出电压和电流随负载的变化关系(a)、功率随负载的变化关系(b)、在3000次循环下的可靠性测试(c)

    10.  output voltage and current evolution(a), instantaneous output powers versus external load resistors (b), and reliability test (c) of the PEH based on PAKP composite film.

    图  11  (a)1% Ag PAKP压电能量收集器安装于单车的实物照片; (b)自然状态照片; (c) 磁铁斥力作用下弯曲状态照片;(d) 220 nF瓷片电容在单车运动过程中电容两端电压随时间变化关系图; (e)单车在运动过程中压电能量收集器的电压随时间变化图谱

    Figure  11.  Phots of (a) 1% Ag PAKP PEH fixed on the bicycle; (b) natural state; (c) bending state by magnet repulsion; (d) voltage-time relation of 220 nF ceramic chip capacitor and (e) voltage-time relation of PEH while the bicycle is moving.

  • [1] ZHAO C X, NIU J, ZHANG Y Y, et al. Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator[J]. Composites Part B,2019,178:107447. doi: 10.1016/j.compositesb.2019.107447
    [2] YU S R, ZHANG Y K, YU Z H, et al. PANI/PVDF-TrFE porous aerogel bulk piezoelectric and triboelectric hybrid nanogenerator based on in-situ doping and liquid nitrogen quenching[J]. Nano Energy,2021,80:105519. doi: 10.1016/j.nanoen.2020.105519
    [3] CHEN P, WU P, WANG Q, et al. Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators[J]. Nano Energy,2021,86:106123. doi: 10.1016/j.nanoen.2021.106123
    [4] JIAN G, JIAO Y, MENF Q Z, et al. 3 D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties[J]. Advanced Materials Interfaces,2020,7(16):2000484. doi: 10.1002/admi.202000484
    [5] WANG X X, SONG W Z, YOU M H, et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator[J]. ACS Nano,2018,12(8):8588-8596. doi: 10.1021/acsnano.8b04244
    [6] YANG L, ZHAO Q Y, CHEN K N, et al. PVDF-based composition-gradient multilayered nanocomposites for flexible high-performance piezoelectric nanogenerators[J]. ACS Applied Materials Interfaces,2020,12(9):11045-11054. doi: 10.1021/acsami.9b23480
    [7] SHI K M, SUN B, HUANG X Y, et al. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy,2018,52:153-162. doi: 10.1016/j.nanoen.2018.07.053
    [8] ZHOU Z, ZHANG Z, ZHANG Q L, et al. Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: A cost-effective approach to high-performance piezoelectric nanogenerators[J]. ACS Applied Materials Interfaces,2020,12(1):1567-1576. doi: 10.1021/acsami.9b18780
    [9] BAIRAGI S, ALI W. Poly(vinylidine fluoride) (PVDF)/potassium sodium niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator[J]. Organic Electrons,2020,78:105547. doi: 10.1016/j.orgel.2019.105547
    [10] LV X, WU J G, ZHANG X X. A new concept to enhance piezoelectricity and temperature stability in KNN ceramics[J]. Chemical Engineering Journal,2020,402:126215. doi: 10.1016/j.cej.2020.126215
    [11] BAIRAGI S, ALI W. A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorods based nanocomposite fiber[J]. European Polymer Journal,2019,116:554-561. doi: 10.1016/j.eurpolymj.2019.04.043
    [12] SINGH H, SINGH S, KHARE N. Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal[J]. Composites Science and Technology,2017,149:127-133. doi: 10.1016/j.compscitech.2017.06.013
    [13] ZHANG D Z, DONG Q M, WANG Y, et al. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator[J]. Sensors and Actuators B:Chemical,2021,339:129923. doi: 10.1016/j.snb.2021.129923
    [14] WANG D Y, ZHANG D Z, LI P. Electrospinning of flexible poly(vinyl alcohol)/ MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nano-Micro Letters,2021,13:57. doi: 10.1007/s40820-020-00580-5
    [15] HE L R, LU J, HAN C, et al. Electrohydrodynamic pulling consolidated high-efficiency 3 D printing to architect unusual self-polarized β-PVDF arrays for advanced piezoelectric sensing[J]. Small,2022,18(15):2200114. doi: 10.1002/smll.202200114
    [16] TIAN G, DENG W L, XIONG D, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training[J]. Nano Energy,2019,59:574-581. doi: 10.1016/j.nanoen.2019.03.013
    [17] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy,2020,78:105251. doi: 10.1016/j.nanoen.2020.105251
    [18] HE W D, GUO Y H, ZHAO Y B, et al. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane[J]. Chemical Engineering Journal,2021,423:130247. doi: 10.1016/j.cej.2021.130247
    [19] ZHANG C, FAN Y J, LI H Y, et al. Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes[J]. ACS Nano,2018,12(5):4803-4811. doi: 10.1021/acsnano.8b01534
    [20] FU J, HOU Y D, ZHENG M P, et al. Flexible Piezoelectric energy harvester with extremely high power generation capability by sandwich structure design strategy[J]. ACS Applied Materials Interfaces,2020,12(8):9766-9774. doi: 10.1021/acsami.9b21201
    [21] YANG H J, LU Z L, LI L H, et al. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance[J]. ACS Applied Materials Interfaces,2020,12(39):43942-43949. doi: 10.1021/acsami.0c13057
    [22] PAL A, SASMAL A, MANOJ B, et al. Enhancement in energy storage and piezoelectric performance of three phase (PZT/MWCNT/PVDF) composite[J]. Materials Chemistry and Physics,2020,244:122639. doi: 10.1016/j.matchemphys.2020.122639
    [23] LI X X, JI D X, YU B X, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345. doi: 10.1016/j.cej.2021.130345
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-05-19
  • 修回日期:  2022-05-10
  • 网络出版日期:  2022-05-30

目录

    /

    返回文章
    返回