Microstructure and Wide-temperature Range Tribological Properties of Silicide Coatings on High Niobium TiAl Alloy
-
摘要: 为了改善TiAlNb金属间化合物抗氧化耐磨损性能不足的问题,通过扩散渗法在TiAlNb9合金表面制备了双稀土改性的硅化物涂层,并对其微观结构与相组成进行了分析表征,对比研究了TiAlNb9基体和Si-Ce-Y共渗层与WC球在宽温域下的摩擦磨损行为。结果表明:不同催化剂NaF,NH4Cl,AlCl3·6H2O所制备的渗层均具有多层结构,从外到内依次为(Ti,Nb)Si2、(Ti,Nb)5Si4和(Ti,Nb)5Si3外层,(Ti,Nb)5Si4及(Ti,Nb)5Si3中间层,TiAl2内层,催化剂类型对渗层的致密性有显著影响。在实验条件下,Si-Ce-Y共渗层的抗摩擦磨损性能明显优于TiAlNb9基体,TiAlNb9基体在20℃的磨损机制为磨粒磨损和犁削磨损,在600℃下的磨损机制主要为氧化磨损、犁削磨损、磨粒磨损;Si-Ce-Y共渗层在20℃及600℃下的磨损机制相似,均为削层磨损和磨粒磨损。Abstract: In order to improve the deficient oxidation and wear resistance of TiAlNb intermetallics, a dual rare-earth modified silicide coating was prepared on a TiAlNb9 alloy using the pack cementation process. The microstructure and phase composition of the coating were analyzed and characterized, and the friction and wear behavior of the TiAlNb9 substrate and the Si-Ce-Y co-diffused coating against WC balls has been comparatively investigated across a broad temperature range. The results show that the coatings prepared with different activators, including NaF, NH4Cl, and AlCl3·6H2O, have multi-layer structures: from the surface to the interior, the coatings are composed of outer layers of (Ti,Nb)Si2, (Ti,Nb)5Si4 and (Ti,Nb)5Si3, middle layers of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and the inner layers of TiAl2. The activators have imposed a significant impact on the density of the co-diffusion coatings. Under experimental conditions, the friction and wear resistance of the Si-Ce-Y co-diffusion coating are significantly better than those of the TiAlNb9 substrate. The wear mechanisms of the TiAlNb9 substrate at 20℃ are abrasive wear and plowing wear, while at 600℃, the main wear mechanisms are oxidational wear, plowing wear, and abrasive wear. The wear mechanisms of the Si-Ce-Y co-diffusion layer at 20℃ and 600℃ are similar, mainly including delamination wear and abrasive wear.
-
Key words:
- TiAlNb9 alloy /
- Si-Ce-Y co-deposition /
- microstructure /
- wear rate /
- wear mechanism
-
图 2 不同催化剂制备的Si-Ce-Y共渗层的截面形貌和元素浓度分布曲线 ((a),(a')) NH4Cl;((b),(b')) AlCl3·6 H2O;((c),(c')) NaF
Figure 2. Cross-sectional morphology and elemental concentration distribution curves of the Si-Ce-Y co-deposition coating prepared using different types of catalysts ((a),(a')) NH4Cl; ((b),(b'))AlCl3·6 H2O; ((c),(c'))NaF, 1-4 EDS Test point
-
[1] SOLECKA M, RADZI A, RUTKOWSKI B. New insight on study of Ni-base alloy clad layer after oxidation at 650℃[J]. Corrosion Science, 2019, 149: 244-248. doi: 10.1016/j.corsci.2019.01.013 [2] ZOU Q, GUAN Y, LI Y G, et al. Advances and perspectives of TiAl alloy and its composites[J]. Journal of Yanshan University, 2020, 44(2): 95-107. [3] 宫声凯, 尚勇, 张继, 等. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(5): 1067-1076. doi: 10.11900/0412.1961.2019.00148GONG S K, SHANG Y, ZHANG J, et al. Applicaton and research of typical Intermetallics-based high temperature structural materials in china[J]. Acta metallurgica sinica, 2019, 55(5): 1067-1076. (in chinese doi: 10.11900/0412.1961.2019.00148 [4] ZHANG C Y, ZHANG L X, HOU H. First-principles study on the elastic properties of D019-Ti3Al by the Co, Ni and Ga alloying[J]. Journal of Atomic and Molecular Physics, 2019, 36(6): 1025-1030. [5] PAN Y, LU X, LIU C C, et al. Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys[J]. Acta Metallurgica Sinica, 2018, 54(1): 93-99. [6] LIU J, ZHANG L, GE G. Study of the orientation relationship of the residual α2(Ti3Al) in γ(TiAl) sheet after heat treatment[J]. Journal of Material Engineering and Performance, 31(2022): 4224-4231. [7] PILONE D, MONDAL A, BROTZU A, et al, Enhanced high temperature mechanical behavior of an in situ TiAl Matrix Composite Reinforced with Alimina[J]. International Journal of Metalcasting, 2023, 77(2): 1139-1147. [8] 张强, 李慧中, 梁霄鹏, 等. 基于数值模拟的粉末冶金TiAl合金叶片模锻工艺研究[J]. 粉末冶金材料科学与工程, 2021, 26(1): 1-8. doi: 10.3969/j.issn.1673-0224.2021.01.001ZHANG Q, LI H Z, LIANG X P, et al. Research on die forging process of powder metallurgy TiAl alloy blade based on numerical simulation[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 1-8. (in chinese doi: 10.3969/j.issn.1673-0224.2021.01.001 [9] MOLAEI R, FATEMI A, PHAN N. Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects[J]. International Journal of Fatigue, 2018, 117: 352-370. doi: 10.1016/j.ijfatigue.2018.07.035 [10] XIANG L, TANG B, XUE X Y, et al. Microstructural characteristics and dynamic recrystallization behavior of β-γ TiAl based alloy during high temperature deformation[J]. Intermetallics, 2018, 97: 52-57. doi: 10.1016/j.intermet.2018.04.002 [11] PING F P, HU Q M, Bakulin A V, et al. Alloying effects on properties of Al2O3 and TiO2 in connection with oxidation resistance of TiAl[J]. Intermetallics, 2016, 68: 57-62. doi: 10.1016/j.intermet.2015.09.005 [12] 王欣, 罗学昆, 宇波, 等. 航空航天用钛合金表面工程技术研究进展[J]. 航空制造技术, 2022, 65(4): 14-24.WANG X, LUO X K, YU B, et al. Research progress on surface engineering technology of aerospace titanium alloys[J]. Aeronautical Manufacturing Technology, 2022, 65(4): 14-24. [13] SU Y, KONG F T, Wang Z B, et al. Oriented porous anodic oxide layers on Ti-50Al without standing oxidation resistance at 800 ℃[J]. Corrosion Science, 2019, 159: 108146-10855. doi: 10.1016/j.corsci.2019.108146 [14] BISHOY A, PATRICK G, Christian M. Erratum to: Temperature measurement challenges and limitations for in-flight particles in suspense on plasma spraying[J]. Journal of Thermal Spray Technology, 2017, 26(4): 798-804. doi: 10.1007/s11666-017-0552-7 [15] 王洪孔, 郑可, 高洁, 等. γ-TiAl合金表面TiC渗镀层的摩擦磨损性能[J]. 中国表面工程, 2018, 31(6): 28-33. doi: 10.11933/j.issn.1007-9289.20180605001WANG H K, ZHENG K, GAO J, et al. Wear properties of TiC permeation layer prepared on γ-TiAl alloy[J]. China Surface Engineering, 2018, 31(6): 28-33. (in chinese doi: 10.11933/j.issn.1007-9289.20180605001 [16] 包雅婷, 王亚楠, 郑磊, 等. 阳极氧化对TiAl合金高温氧化行为和力学性能的影响[J]. 航空材料学报, 2021, 41(2): 72-79. doi: 10.11868/j.issn.1005-5053.2020.000129BAO Y T, WANG Y, ZHENG L, et al. effect of the anodization on high tempreture oxidation behavior and mechanical properties of TiAl alloy[J]. Journal of Aeronautical Materials, 2021, 41(2): 72-79. (in chinese doi: 10.11868/j.issn.1005-5053.2020.000129 [17] KANJER A, OPTASANU V, MACRO C, et al. Improving the high temperature oxidation resistance of pure titanium by shot peening treatments[J]. Surface and Coatings Technology, 2018, 343: 93-100. doi: 10.1016/j.surfcoat.2017.10.065 [18] 刘秀波, 刘元富, 穆俊世, 等. γ-TiAl合金激光熔覆高温自润滑耐磨复合材料涂层研究[J]. 摩擦学学报, 2009, 29(6): 499-504. doi: 10.3321/j.issn:1004-0595.2009.06.003LIU X B, LIU Y F, MU J S, et al. Laser cladding for high temperature self lubrication wear resistant composite coating on γ-TiAl intermetallic alloy[J]. Tribology, 2009, 29(6): 499-504. (in chinese doi: 10.3321/j.issn:1004-0595.2009.06.003 [19] 李轩, 郭喜平. Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2 复合渗层的组织及抗高温氧化性能[J]. 金属学报, 2015, 51(6): 693-699.LI X, GUO X P. Microstructure and oxidation behavior of ZrSi2-NbSi2 multilayer coatings on an Nb-Ti-Si-Cr base ultrahigh temperature alloy[J]. Acta metallurgica sinica, 2015, 51(6): 693-699. (in chinese [20] 刘英, 张永安, 王卫, 等. 稀土Y对Ni-Fe-Co-Cu合金微观组织和高温氧化性能的影响[J]. 稀有金属, 2020, 44(1): 9-14.LIU Y, ZHANG Y G, WANG W, etal. Influence of rare earth Y on microstructure and hogh temperature oxidation behavior of Ni-Fe-Co-Cu alloy[J]. Chinese Journal of Rare Matels, 2020, 44(1): 9-14. (in chinese [21] LI Y Q, XIE F Q, WU X Q, et al. Effects of Y2O3 on the microstructures and wear resistance of Si-Al-Y co-deposition coatings prepared on TiAl alloy by pack cementation technique[J], Applied Surface Science, 278(2013)30-36. [22] LI Y Q, LIANG G D, TIAN X D, et al. Si-Al-Y Co-deposition Coatings Prepared on Ti-Al Alloy for Enhanced High Temperature Oxidation Resistance[J]. Journal of Wuhan University of Technology-Mater, 2018, 33(4): 959-966. doi: 10.1007/s11595-018-1919-4 [23] LI Y Q, YANG S L. Microstructure and hot corrosion resistance of Si-Al-Y coated TiAl alloy[J]. Journal of Central South University, 2020, 27: 2530-2537. doi: 10.1007/s11771-020-4478-8 [24] 薛群基, 张俊彦. 润滑材料摩擦化学[J]. 化学进展, 2009, 21(11): 2445-2456.XUE Q J, ZHANG J Y. Tribochemistry of Lubricating Materials[J]. Progress in Chemistry, 2009, 21(11): 2445-2456. (in chinese