留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生聚酯中空纤维基吸声材料的制备与性能

相玉龙 郭静 管福成 李峰 杨强 狄纯秋

相玉龙, 郭静, 管福成, 等. 再生聚酯中空纤维基吸声材料的制备与性能[J]. 复合材料学报, 2023, 40(1): 212-218. doi: 10.13801/j.cnki.fhclxb.20220225.004
引用本文: 相玉龙, 郭静, 管福成, 等. 再生聚酯中空纤维基吸声材料的制备与性能[J]. 复合材料学报, 2023, 40(1): 212-218. doi: 10.13801/j.cnki.fhclxb.20220225.004
XIANG Yulong, GUO Jing, GUAN Fucheng, et al. Preparation and properties of regenerated polyester hollow fiber wikis for sound absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 212-218. doi: 10.13801/j.cnki.fhclxb.20220225.004
Citation: XIANG Yulong, GUO Jing, GUAN Fucheng, et al. Preparation and properties of regenerated polyester hollow fiber wikis for sound absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 212-218. doi: 10.13801/j.cnki.fhclxb.20220225.004

再生聚酯中空纤维基吸声材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220225.004
基金项目: 国家自然科学基金(51773024;51373027);辽宁省创新团队基金(LT2017017);辽宁省自然科学基金(20180550429);中国化学纤维工业协会•绿宇基金(CCFA-LVYU-2019-02)
详细信息
    通讯作者:

    郭静,博士,教授,博士生导师,研究方向为高分子材料、纤维复合材料 E-mail: guojing8161@163.com

  • 中图分类号: TQ341.9;TB34

Preparation and properties of regenerated polyester hollow fiber wikis for sound absorption

Funds: National Natural Science Foundation of China (51773024; 51373027); Liaoning Innovation Team Fund (LT2017017); Liaoning Provincial Natural Science Foundation (20180550429); China Chemical Fiber Industry Association • Green Yu Fund (CCFA-LVYU-2019-02)
  • 摘要: 随着环境污染问题的不断加剧,瓶片基再生聚酯纤维的开发和应用具有重要意义。本文以再生聚酯中空纤维和皮芯型热粘合纤维为原料,通过热风固结成型制备具有多尺度微孔的吸声材料,表征了聚酯中空纤维的结构与性能,此外采用驻波管法研究了中空纤维的线密度与吸声效果的关系,并提出了“多级”吸声理论。结果表明,线密度为10 D的中空纤维具有最大的中空度,最好的韧性,最优的吸声效果;吸声系数和降噪系数随厚度的增加线性增加,当厚度为2 cm时,降噪系数(NRC)大于0.5 ,有望成为理想的吸声材料。

     

  • 图  1  热风固结吸声材料制备工艺流程图

    Figure  1.  Heat-air solidified sound-absorbing material preparation process flow chart

    图  2  纤维截面的光学图像:中空聚酯纤维 ((a) 3.3 D;(b) 6.6 D;(c) 10 D;(d) 15 D) 和皮芯型热粘合纤维 (e)

    Figure  2.  Optical images of fibers cross section: Hollow polyester fibers ((a) 3.3 D; (b) 6.6 D; (c) 10 D; (d) 15 D) and skin core type heat-bonded fibers (e)

    图  3  不同纤度聚酯中空纤维的断裂强度和断裂伸长率

    Figure  3.  Breaking strength and elongation at break of hollow polyester fibers with different fineness

    图  4  聚酯纤维及吸声材料的热分析曲线:熔融 ((a)、(c));结晶 ((b)、(d))

    Figure  4.  Thermal analysis curves of polyester fibers and sound absorbing materials: Melt ((a), (c)); Crystallization ((b), (d))

    图  5  热风固结吸声材料表面 ((a)、(b)) 和截面 ((c)、(d)) SEM图像

    Figure  5.  SEM images of surface ((a), (b)) and section ((c), (d)) of sound absorption sample material under hot air consolidation

    图  6  吸声材料的应力响应示意图 (a) 和响应曲线 (b)

    Figure  6.  Schematic diagram of stress response of sound absorbing materials (a) and response curves (b)

    G—Farmar; F—Gravity

    图  7  不同纤度制备的吸声材料吸声系数图

    Figure  7.  Sound absorption coefficient of sound-absorbing felt prepared with different sizes

    图  8  吸声材料的吸声机制图:(a) 驻波管;(b) 吸声材料;(c) 声波在纤维间孔洞中折损;(d) 声波在纤维中空的折损;(e) 纤维自身的振动

    Figure  8.  Sound absorbing mechanism diagram of sound absorbing material: (a) Standing wave tube; (b) Sound absorbing material; (c) Acoustic wave loss in interfiber holes; (d) Loss of acoustic wave in the hollow of the fiber; (e) Vibration of the fiber itself

    图  9  厚度对3#吸声材料吸声效果的影响

    Figure  9.  Influence of thickness on sound absorption effect of 3# sound absorbing material

    表  1  4种吸声材料的原料规格、厚度和密度

    Table  1.   Raw material specifications, thickness and density of 4 kinds of sound absorbing materials

    Sample numberDenier of hollow
    polyester fiber/D
    Thickness/cmDensity/(g·cm−3)
    1#3.3 0.64±0.0020.25±0.020
    2#6.6 0.64±0.003
    3#10 0.64±0.001
    4#15 0.64±0.002
    下载: 导出CSV

    表  2  聚酯中空纤维的中空度

    Table  2.   Hollow degree of hollow polyester fibers

    Fiber
    denier
    Hollow
    degree/%
    Mean diameter of
    hollow part/μm
    3.3 D22.25 6.62
    6.6 D22.3613.08
    10 D26.5715.54
    15 D23.5116.25
    Note: 1 D×1.111=1 dtex.
    下载: 导出CSV
  • [1] VOSS S, SCHNEIDER A, HUTH C, et al. Long-term exposure to air pollution, road traffic noise, residential greenness, and prevalent and incident metabolic syndrome: Results from the population-based KORA F4/FF4 cohort in Augsburg, Germany[J]. Environment International,2021,147:106364. doi: 10.1016/j.envint.2020.106364
    [2] 王笑笛. 玻璃纤维增强水泥基复合材料力学及吸声性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    WANG Xiaodi. Study on mechanical properties and sound absorption properties of glass fiber reinforced cement-based composites[D]. Harbin: Harbin Engineering University, 2018(in Chinese).
    [3] LEWIS R C, GERSHON R R, NEITZEL R L. Estimation of permanent noise-induced hearing loss in an urban setting[J]. Environmental Science & Technology,2013,47(12):6393-6399.
    [4] CHEN Y, YUAN F, SU Q, et al. A novel sound absorbing material comprising discarded luffa scraps and polyester fibers[J]. Journal of Cleaner Production,2020,245:118917. doi: 10.1016/j.jclepro.2019.118917
    [5] SHANG L, ZHAI J, ZHAO G. Stochastic dynamic analysis of acoustic-structural coupled systems under non-stationary random excitations[J]. Journal of Fluids and Structures,2019,91:102742. doi: 10.1016/j.jfluidstructs.2019.102742
    [6] YAO Z, CAI J, WANG X, et al. Application of equivalent diameter in sound absorption performance prediction of non-circular sectional polyester fibers[J]. Applied Acoustics,2021,182:108238. doi: 10.1016/j.apacoust.2021.108238
    [7] LIU X T, JIANG J J,TANG X N, et al. Sound absorption of hollow polyester woven fabric with honeycomb weave[J]. Applied Acoustics,2021,180:108148. doi: 10.1016/j.apacoust.2021.108148
    [8] 伍发元, 代小敏, 方铭, 等. 纤维截面形状对聚酯纤维材料吸声性能的影响研究[J]. 声学技术, 2020, 39(05):618-621.

    WU Fayuan, DAI Xiaomin, FANG Ming, et al. Research on the influence of polyester fiber cross-section shape on sound absorption performance of polyester fiber materials[J]. Technical Acoustics,2020,39(05):618-621(in Chinese).
    [9] SAKTHIVEL S, MELESE B, EDAE A, et al. Garment waste recycled cotton/polyester thermal and acoustic properties of air-laid nonwovens[J]. Advances in Materials Science and Engineering,2020,2020:8304525. doi: 10.1155/2020/8304525
    [10] PENG L, SONG B, WANG J, et al. Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester[J]. Advances in Materials Science and Engineering,2015,2015:274913. doi: 10.1155/2015/274913
    [11] SARI N H, FAJRIN J. Acoustic properties of sound absorber from modified polyester with filler sodium bicarbonate[J]. Oriental Journal of Chemistry,2018,34(4):2187-2191. doi: 10.13005/ojc/3404061
    [12] YOON J W, JANG K S, CHO Y T. A study on the acoustic characteristics and absorption performance improvement method of double layered sound absorption system using high density polyester absorbing materials[J]. Transactions of the Korean Society for Noise and Vibration Engineering,2016,26(3):331-339. doi: 10.5050/KSNVE.2016.26.3.331
    [13] 王 灿, 朱 灿, 姚智敏, 等. 铝纤维/聚酯纤维复合结构的低频吸声性能研究[J]. 声学与振动, 2021, 9(1):30-35. doi: 10.12677/OJAV.2021.91004

    WANG Can, ZHU Can, YAO Zhimin , et al. Study on low frequency sound absorption performance of aluminum fiber/polyester fiber composites[J]. Open Journal of Acoustics and Vibration,2021,9(1):30-35(in Chinese). doi: 10.12677/OJAV.2021.91004
    [14] 吴量, 刘淼, 刘学文, 等. 多层多孔吸声材料结构参数优化设计[J]. 应用声学, 2021, 40(3):449-456.

    WU Liang, LIU Miao, LIU Xuewen, et al. Optimal design of structural parameters of multi-layer porous sound-absorbing materials[J]. Journal of Applied Acoustics,2021,40(3):449-456(in Chinese).
    [15] LEE T, CHEONG Y, BAAC H W, et al. Origin of Gouy phase shift identified by laser-generated focused ultrasound[J]. ACS Photonics,2020,7(11):3236-3245. doi: 10.1021/acsphotonics.0c01313
    [16] 中国国家标准化管理委员会. 非织造布试验方法: GB/T 24218.2—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Test methods for nonwovens: GB/T 24218.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 中国国家标准化管理委员会. 阻抗管吸声系数和声阻抗的测量: GB/T 18696.1—2004 [S]. 北京: 中国标准出版社, 2004.

    Standardization Administration of the People’s Republic of China. Determination of sound absorption coefficient and impedance in impedance tubes: GB/T 24218.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [18] BERTOCCHI M J, VANG P, BALOW R B, et al. Enhanced mechanical damping in electrospun polymer fibers with liquid cores: Applications to sound damping[J]. ACS Applied Polymer Materials,2019,1(8):2068-2076. doi: 10.1021/acsapm.9b00352
    [19] CAO L, SI Y, YIN X, et al. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption[J]. ACS Applied Materials & Interfaces,2019,11(38):35333-35342.
    [20] XIA B, YU D, LIU J. Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters[J]. Journal of Fluids and Structures,2013,38:146-163. doi: 10.1016/j.jfluidstructs.2012.12.003
    [21] 周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车上的应用[J]. 林业工程学报, 2021, 6(03):113-119.

    ZHOU Luwen, LIN Ping, XU Xiaomei, et al. Sound absorption characteristics of the jute fiber felt and its application in automobiles[J]. Journal of Forestry Engineering,2021,6(03):113-119(in Chinese).
    [22] BINBIN D, FEIHONG W, HAMIDREZA A, et al. Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation[J]. ACS Applied Materials & Interfaces,2019,11(45):42801-42807.
    [23] 敖庆波, 王建忠, 李烨, 等. 低频吸声材料的研究进展[J]. 功能材料, 2020, 51(12):12045-12050. doi: 10.3969/j.issn.1001-9731.2020.12.007

    AO Qingbo, WANG Jianzhong, LI Ye, et al. Development of lower frequency sound absorption materials[J]. Journal of Functional Materials,2020,51(12):12045-12050(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.12.007
    [24] OH J H, KIM J, LEE H, et al. Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber[J]. ACS Applied Materials & Interfaces,2018,10(26):22650-22660.
    [25] HE C, HUANG J, LI S, et al. Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):927-936.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  781
  • HTML全文浏览量:  401
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-01-14
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回