留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚芳醚酮(PAEK)树脂熔体黏度及冲击能量对其复合材料冲击损伤行为的影响

顾洋洋 张金栋 刘刚 刘衍腾 甘建 杨曙光

顾洋洋, 张金栋, 刘刚, 等. 聚芳醚酮(PAEK)树脂熔体黏度及冲击能量对其复合材料冲击损伤行为的影响[J]. 复合材料学报, 2023, 40(10): 5641-5653. doi: 10.13801/j.cnki.fhclxb.20221228.003
引用本文: 顾洋洋, 张金栋, 刘刚, 等. 聚芳醚酮(PAEK)树脂熔体黏度及冲击能量对其复合材料冲击损伤行为的影响[J]. 复合材料学报, 2023, 40(10): 5641-5653. doi: 10.13801/j.cnki.fhclxb.20221228.003
GU Yangyang, ZHANG Jindong, LIU Gang, et al. Effect of melt viscosity and impact energy of poly aryl ether ketone (PAEK) resins on the impact damage behavior of their composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5641-5653. doi: 10.13801/j.cnki.fhclxb.20221228.003
Citation: GU Yangyang, ZHANG Jindong, LIU Gang, et al. Effect of melt viscosity and impact energy of poly aryl ether ketone (PAEK) resins on the impact damage behavior of their composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5641-5653. doi: 10.13801/j.cnki.fhclxb.20221228.003

聚芳醚酮(PAEK)树脂熔体黏度及冲击能量对其复合材料冲击损伤行为的影响

doi: 10.13801/j.cnki.fhclxb.20221228.003
基金项目: 中央高校基本科研业务费专项资金(2232022 A-12)
详细信息
    通讯作者:

    刘刚,博士,研究员,博士生导师,研究方向为纤维增强树脂基复合材料 E-mail: liugang@dhu.edu.cn

  • 中图分类号: TB332

Effect of melt viscosity and impact energy of poly aryl ether ketone (PAEK) resins on the impact damage behavior of their composites

Funds: Fundamental Research Funds for the Central Universities (2232022 A-12)
  • 摘要: 采用两种不同熔体黏度的国产高性能聚芳醚酮树脂(PAEK-L、PAEK-H)及国产T300级碳纤维(SCF35),制备了碳纤维增强聚芳醚酮(SCF35/PAEK)热塑性复合材料,研究了树脂基体黏度及冲击能量对复合材料冲击性能的影响,采用Micro-CT表征了准静态压入试样的内部形貌,研究了复合材料的冲击损伤机制。结果显示流动性较低的PAEK-L树脂基复合材料比流动性较高的PAEK-H树脂基复合材料具有更高的抗冲击性能,SCF35/PAEK-L复合材料体系冲击能量的损耗比SCF35/PAEK-H复合材料体系低~7%,其损伤面积小~90%,在6.67 J/mm的冲击能量下,其冲击后压缩强度达到~307 MPa,比SCF35/PAEK-H复合材料体系冲击后压缩强度(205 MPa)高~50%;SCF35/PAEK-L复合材料中表面凹坑的深度随冲击能量的增加呈增加的趋势,冲击后压缩强度随冲击能量的增加呈降低的趋势,当复合材料的表面凹坑深度达到1.0 mm左右,即达到勉强目视可见冲击损伤(BVID)门槛值时,剩余压缩强度为~268 MPa。准静态压入实验结果显示,SCF35/PAEK-L复合材料受到冲击后表面凹坑主要由树脂基体的塑性变形及纤维屈曲造成,表面凹坑周围的裂纹由压缩应力造成,冲击过程中试样背面的纤维在拉伸应力的作用下发生断裂,试样底层的纤维在剪切力的作用下萌生层间裂纹,随着试样挠曲变形程度的增加,纤维的断裂程度增加且层间裂纹逐渐扩展。

     

  • 图  1  聚芳醚酮(PAEK)树脂的分子结构

    Figure  1.  Molecular structure of poly aryl ether ketone (PAEK)

    图  2  SCF35/PAEK预浸带的浸渍质量:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H

    Figure  2.  Impregnation quality of SCF35/PAEK prepreg: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    图  3  SCF35/PAEK复合材料成型工艺

    Figure  3.  Forming process of SCF35/PAEK composite

    图  4  SCF35/PAEK复合材料中典型的冲击损伤面积S:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H

    Figure  4.  Typical impact damage areas S in SCF35/PAEK composites: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    图  5  SCF35/PAEK复合材料典型的冲击载荷与冲击位移间的关系:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H

    Figure  5.  Typical relationship between impact load and impact displacement for SCF35/PAEK composites: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    图  6  SCF35/PAEK复合材料典型的冲击能量与冲击时间的关系:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H

    Figure  6.  Typical relationship between impact energy and impact time for SCF35/PAEK composites: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    图  7  PAEK树脂基体对SCF35碳纤维的浸润状态:(a) Cassie接触状态;(b) Wenzel接触状态

    Figure  7.  Infiltration state of PAEK resin matrix on SCF35 carbon fiber: (a) Cassie state; (b) Wenzel state

    图  8  SCF35/PAEK断裂形貌:(a) SCF35/PAEK-L I型;(b) SCF35/PAEK-L II型;(c) SCF35/PAEK-H I型;(d) SCF35/PAEK-H II型

    Figure  8.  Fracture morphologies of SCF35/PAEK: (a) SCF35/PAEK-L type I; (b) SCF35/PAEK-L type II; (c) SCF35/PAEK-H type I; (d) SCF35/PAEK-H type II

    图  9  SCF35/PAEK-L复合材料不同冲击能量下冲击载荷与冲击位移的关系:(a) 25 J;(b) 30 J;(c) 35 J;(d) 40 J;(e) 45 J;(f) 50 J

    Figure  9.  Relationship between impact load and impact displacement for different impact energies of SCF35/PAEK-L composites: (a) 25 J; (b) 30 J; (c) 35 J; (d) 40 J; (e) 45 J; (f) 50 J

    图  10  SCF35/PAEK-L复合材料不同冲击能量与冲击时间的关系:(a) 25 J;(b) 30 J;(c) 35 J;(d) 40 J;(e) 45 J;(f) 50 J

    Figure  10.  Relationship between different impact energy and impact time of SCF35/PAEK-L composite: (a) 25 J; (b) 30 J; (c) 35 J; (d) 40 J; (e) 45 J; (f) 50 J

    图  11  SCF35/PAEK-L复合材料在不同冲击能量下的冲击损伤面积

    Figure  11.  Impact damage area of SCF35/PAEK-L composite at different impact energies

    图  12  SCF35/PAEK-L复合材料在不同冲击能量下的表面凹坑形貌

    Figure  12.  Morphologies of surface dent of SCF35/PAEK-L composite at different impact energies

    图  13  SCF35/PAEK-L复合材料的凹坑深度、凹坑直径、损伤面积与冲击能量的关系

    Figure  13.  Relationship between dent depth, dent diameter, damage area and impact energy of SCF35/PAEK-L composite

    BVID—Barely visible impact damage

    图  14  SCF35/PAEK-L复合材料不同冲击能量下的冲击后压缩强度

    Figure  14.  Compression strength after impact of SCF35/PAEK-L composites at different impact energies

    图  15  SCF35/PAEK-L复合材料的冲击损伤表面形貌

    Figure  15.  Impact damage surface morphologies of composite

    D—Diameter of the dent on the impact-damaged surface of the composites

    图  16  SCF35/PAEK-L复合材料的凹坑回弹变化

    Figure  16.  Resilience variation of surface dent depth of SCF35/PAEK-L composite

    图  17  SCF35/PAEK-L复合材料在准静态压入过程中的载荷-位移曲线及表面凹坑形貌

    Figure  17.  Load-displacement curves and surface crater morphologies of SCF35/PAEK-L composites during quasi-static indentation process

    图  18  SCF35/PAEK-L复合材料在准静态压入过程中不同阶段的内部形貌

    Figure  18.  Internal morphologies of SCF35/PAEK-L composite at different stages in quasi-static indentation process

    表  1  国产 T300 级碳纤维(SCF35)/PAEK预浸带参数及其复合材料基本性能

    Table  1.   Parameters of domestic T300 grade carbon fiber (SCF35)/PAEK prepreg and its basic composite properties

    PrepregsFAW/
    (g∙m−2)
    FC/%RC/%Tensile properties (0°)Compression properties (0°)Flexural properties (0°)
    Strength/
    MPa
    Modulus/
    GPa
    Strength/
    MPa
    Modulus/
    GPa
    Strength/
    MPa
    Modulus/
    GPa
    SCF35/PAEK-L145±552±340±2173011911401161400117
    SCF35/PAEK-H172012512001181560118
    Notes: FAW—Fiber areal weight of SCF35/PAEK prepreg; FC—Fiber content by volume of SCF35/PAEK prepreg; RC—Resin content by weight of SCF35/PAEK prepreg; SCF35/PAEK-L—Composites of SCF35 carbon fiber reinforced low flowability poly aryl ether ketone; SCF35/PAEK-H—Composites of SCF35 carbon fiber reinforced high flowability poly aryl ether ketone.
    下载: 导出CSV

    表  2  SCF35/PAEK复合材料的抗冲击损伤性能

    Table  2.   Impact damage resistance of SCF35/PAEK composites

    SystemImpact energy/(J·mm−1)Dent depth/mmDamage area/cm2CAI/MPa
    SCF35/PAEK-L6.670.6 ± 0.04 5.3 ± 0.3307 ± 16
    SCF35/PAEK-H1.0 ± 0.0910.0 ± 0.9205 ± 11
    Domestic T300/EP0.3 ± 0.0311.0 ± 1.34197 ± 15
    TC1225[23]30.5 J310 ± 11
    Notes: CAI—Compression after impact strength of SCF35/PAEK composites; TC1225—Standard modulus carbon fiber reinforced PAEK prepreg manufactured by Toray Corporation of Japan; EP—Epoxy resin.
    下载: 导出CSV
  • [1] LIU H B, LIU J, DING Y Z, et al. The behaviour of thermoplastic and thermoset carbon fiber composites subjected to low-velocity and high-velocity impact[J]. Journal of Materials Science,2020,55(33):15741-15768. doi: 10.1007/s10853-020-05133-0
    [2] JOGUR G, NAWAZ KHAN A, DAS A, et al. Impact properties of thermoplastic composites[J]. Textile Progress,2018,50(3):109-183. doi: 10.1080/00405167.2018.1563369
    [3] 谌广昌, 姚佳楠, 张金栋, 等. 高性能热塑性复合材料在直升机结构上的应用与展望[J]. 航空材料学报, 2019, 39(5):24-33. doi: 10.11868/j.issn.1005-5053.2019.000035

    CHEN Guangchang, YAO Jia'nan, ZHANG Jindong, et al. Application and prospect of high performance thermoplastic composites in helicopter structure[J]. Journal of Aeronautical Materials,2019,39(5):24-33(in Chinese). doi: 10.11868/j.issn.1005-5053.2019.000035
    [4] 杨洋, 见雪珍, 袁协尧, 等. 先进热塑性复合材料在大型客机结构零件领域的应用及其制造技术[J]. 玻璃钢, 2017, 4(194):3-17.

    YANG Yang, JIAN Xuezhen, YUAN Xieyao, et al. Application and manufacturing technology of advanced thermoplastic composites in structural parts of large passenge aircraft[J]. Fiber Reinforced Plastics,2017,4(194):3-17(in Chinese).
    [5] 郭云竹. 热塑性复合材料研究及其在航空领域中的应用[J]. 纤维复合材料, 2016, 33(3):20-23. doi: 10.3969/j.issn.1003-6423.2016.03.005

    GUO Yunzhu. Research on thermoplastic composites and its application in the field of aviation[J]. Fiber Composites,2016,33(3):20-23(in Chinese). doi: 10.3969/j.issn.1003-6423.2016.03.005
    [6] 罗云烽, 姚佳楠. 高性能热塑性复合材料在民用航空领域中的应用[J]. 航空制造技术, 2021, 64(16):93-102. doi: 10.16080/j.issn1671-833x.2021.16.093

    LUO Yunfeng, YAO Jia'nan. Applications of high performance thermoplastic composites in civil aviation[J]. Aeronautical Manufacturing Technology,2021,64(16):93-102(in Chinese). doi: 10.16080/j.issn1671-833x.2021.16.093
    [7] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 28(2):44-47. doi: 10.3969/j.issn.1003-6423.2011.02.011

    WANG Xinggang, YU Yang, LI Shumao, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites,2011,28(2):44-47(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.011
    [8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8):49-61. doi: 10.11868/j.issn.1001-4381.2019.000209

    ZHAO Yan, LIU Hansong. Preparation and application of continuous fiber reinforced high performance thermoplastic resin matrix composites[J]. Materials Engineering,2020,48(8):49-61(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000209
    [9] LAGACE P A, WILLIAMSON J E, WILSON TSANG P H, et al. A preliminary proposition for a test method to measure (impact) damage resistance[J]. Journal of reinforced Plastics and Composites,1993,12(5):584-601. doi: 10.1177/073168449301200508
    [10] BYERS B A. Behavior of damaged graphite/epoxy laminates under compression loading[R]. Boeing Commercial Airplane Co. Seattle Wa, 1980.
    [11] 王俭, 沈真. 复合材料冲击损伤阻抗性能的试验研究[J]. 航空制造技术, 2009(S1):161-164. doi: 10.3969/j.issn.1671-833X.2009.z1.050

    WANG Jian, SHEN Zhen. Experimental study on impact damage resistance property of composites[J]. Aeronautical Manufacturing Technology,2009(S1):161-164(in Chinese). doi: 10.3969/j.issn.1671-833X.2009.z1.050
    [12] 沈真, 杨胜春, 陈普会. 复合材料层压板抗冲击行为及表征方法的实验研究[J]. 复合材料学报, 2008, 25(5):125-133. doi: 10.3321/j.issn:1000-3851.2008.05.021

    SHEN Zhen, YANG Shengchun, CHEN Puhui. Experimental study on the behavior and characterization methods of composite laminates to withstand impact[J]. Acta Materiae Compositae Sinica,2008,25(5):125-133(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.021
    [13] Department of Defense. Composite materials handbook: MIL-H DBK-17F[S]. Virginia: US Department of Defense, 2002.
    [14] MORTEAU E, FUALDES C. Composites@airbus damage tolerance methodology[C]//Workshop for Composite Damage Tolerance and Maintenance. Chicago, IL: Federal Aeronautics Administration. 2006: 1.
    [15] LIU H, LIU J, DING Y, et al. Investigations on the impact behaviour of fibre-reinforced composites: Effect of impact energy and impactor shape[J]. Procedia Structural Integrity,2020,28:106-115. doi: 10.1016/j.prostr.2020.10.014
    [16] GE X, ZHANG P, ZHAO F, et al. Experimental and numerical investigations on the dynamic response of woven carbon fiber reinforced thick composite laminates under low-velocity impact[J]. Composite Structures,2022,279:114792. doi: 10.1016/j.compstruct.2021.114792
    [17] BADER M G, BAILEY J E, BELL I. The effect of fibre-matrix interface strength on the impact and fracture properties of carbon-fibre-reinforced epoxy resin composites[J]. Journal of Physics D: Applied Physics,1973,6(5):572-586. doi: 10.1088/0022-3727/6/5/314
    [18] BULL D J, SPEARING S M, SINCLAIR I. Investigation of the response to low velocity impact and quasi-static indentation loading of particle-toughened carbon-fibre composite materials[J]. Composites Part A: Applied Science and Manufacturing,2015,74:38-46. doi: 10.1016/j.compositesa.2015.03.016
    [19] 顾洋洋, 姚佳楠, 王力风, 等. 聚芳醚酮树脂基体特性对复合材料界面性能和层间性能的影响[J]. 复合材料学报, 2023, 40(8): 4486-4495.

    GU Yangyang, YAO Jia'nan, WANG Lifeng, et al. Influence of poly aryl ether ketone resin matrix properties on interfacial properties and interlayer properties of composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4486-4495(in Chinese).
    [20] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136 M-20[S]. West Conshohocken: ASTM International, 2020.
    [21] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer-matrix composite to a concentrated quasi-static indentation force: ASTM D6264/D6264 M-17[S]. West Conshohocken: ASTM International, 2017.
    [22] ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite laminates: ASTM D7137/D7137 M-17[S]. West Conshohocken: ASTM International, 2017.
    [23] CLARKSON E. Medium toughness PAEK thermoplastics toray (Formerly TenCate) Cetex® TC1225 (LM PAEK) T700 GC 12 K T1 E unidirectional tape 145 gsm 34% RC material allowables statistical analysis report[D]. Wichita: Wichita State University, 2020.
    [24] LU T, CHEN X, WANG H, et al. Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope[J]. Polymer Testing,2020,91:106730. doi: 10.1016/j.polymertesting.2020.106730
    [25] YASAEE M, BOND I P, TRASK R S, et al. Damage control using discrete thermoplastic film inserts[J]. Composites Part A: Applied Science and Manufacturing,2012,43(6):978-989. doi: 10.1016/j.compositesa.2012.01.011
    [26] SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: A review[J]. Composite Structures,2019,217:100-121. doi: 10.1016/j.compstruct.2019.03.021
    [27] ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures,2019,224:111007. doi: 10.1016/j.compstruct.2019.111007
    [28] TAN W, NAYA F, YANG L, et al. The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling[J]. Composites Part B: Engineering,2018,138:206-221. doi: 10.1016/j.compositesb.2017.11.043
    [29] LU C, WANG J, LU X, et al. Wettability and interfacial properties of carbon fiber and poly (ether ether ketone) fiber hybrid composite[J]. ACS Applied Materials & Interfaces,2019,11(34):31520-31531.
    [30] YAVAS D, ZHANG Z, LIU Q, et al. Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing[J]. Composites Part B: Engineering,2021,204:108460. doi: 10.1016/j.compositesb.2020.108460
    [31] XU W, DING J C. Correction of the large displacement effect on determination of mode I interlaminar fracture toughness of composite[J]. Engineering Fracture Mechanics,2020,238:107279. doi: 10.1016/j.engfracmech.2020.107279
    [32] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.
    [33] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [34] DAVALLO M. Factors affecting fracture behaviour of composite materials[J]. International Journal of ChemTech Research,2010,2(4):2125-2130.
    [35] 李东明. 塑料冲击试验方法的评价[J]. 塑料, 1989, 18(4):46-50.

    LI Dongming. Evaluation of plastics impact test method[J]. Plastics,1989,18(4):46-50(in Chinese).
    [36] LOPRESTO V, CAPRINO G. Damage mechanisms and energy absorption in composite laminates under low velocity impact loads[M]//Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer, 2013: 209-289.
    [37] RICHARDSON M O W, WISHEART M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A: Applied Science and Manufacturing,1996,27(12):1123-1131. doi: 10.1016/1359-835X(96)00074-7
    [38] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2018,104:41-59. doi: 10.1016/j.compositesa.2017.10.026
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  285
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-10
  • 录用日期:  2022-12-20
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回