Research progress on application of smart technology in anti-icing and de-icing
-
摘要:
结冰会严重影响交通载具、大型建筑、工业生产等社会生活各方面的安全性和稳定性,造成经济损失甚至危及人身安全,因此开展防/除冰材料与技术的研究具有重要价值。伴随着新装备和新技术的快速发展,具有结冰传感探测、自诊断与控制、外场驱动响应等功能的智能防/除冰技术为解决表面结冰问题提供了新思路。本文首先阐述了空中、陆地和海洋等不同环境下的结冰原理,在总结归纳主被动防/除冰技术优缺点的基础上,结合智能防/除冰技术的特点,介绍了微波谐振传感器、电容式传感器和光纤传感器的结冰探测机制;剖析了智能技术在防/除冰系统中的应用,对电加热法与低界面韧性涂层复合的智能混合防/除冰系统、结冰探测和防/除冰一体化的介质阻挡放电(DBD)等离子体致动器以及由形状记忆聚合物组成的动态防/除冰系统进行了详细讨论;并概述了光热驱动响应和温度驱动响应的智能防/除冰涂层。最后对智能技术在防/除冰中的未来研究方向和发展趋势进行了展望。
Abstract:Icing can seriously affect the safety and stability of various aspects of social life such as traffic vehicles, large buildings and industrial production, causing economic losses and even endangering personal safety. Therefore, it is of great value to carry out research on anti-/de-icing materials and technologies. With the rapid development of new equipment and technologies, smart anti-/de-icing technology with functions such as icing sensing detection, self-diagnose and control, and external field driven response has provided new ideas for solving surface icing problems. In this paper, firstly, the principles of icing in air environment, terrestrial environment and marine environment were described. On the basis of summarizing the advantages and disadvantages of active and passive anti-/de-icing technologies, in combination with the characteristics of smart anti-/de-icing technology, the icing detection mechanism of microwave resonant sensor, capacitive sensor and optical fiber sensor was introduced. And the applications of smart technology in anti-/de-icing systems were analyzed, discussing in detail the smart hybrid anti-/de-icing system composed of electric heating and low-interfacial toughness coatings, the dielectric barrier discharge (DBD) plasma actuator with integrated functions of icing detection and anti-/de-icing, and the dynamic anti-/de-icing system composed of shape memory polymers. What’s more, smart anti-/de-icing coatings for photothermal driven response and temperature driven response were also outlined. Finally, the future research directions and development trends of smart technology in anti-/de-icing were prospected.
-
FeSiAl金属磁粉芯具有优良的频率稳定性、功率损耗低、价格低等优点,广泛应用于开关电源、滤波电感器和脉冲变压器[1-4]。随着电器小型化、智能化的发展,磁粉芯需要具有更低的功率损耗。在生产磁粉芯过程中,磁粉绝缘包覆工艺、热处理等因素直接影响磁粉芯功率损耗[5]。磁粉的绝缘包覆包括有机包覆、无机包覆和有机-无机复合包覆等[6],业界广泛采用磷酸有机溶液(丙酮、乙醇等)作为磷化液对磁粉进行包覆处理,即通过化学反应在磁粉表面形成一层绝缘磷化膜。但磷酸在有机溶液中与磁粉反应不完全,后续生产中残留磷酸有腐蚀磁粉的风险,造成功率损耗升高[7];另外有机物用量大、易挥发、污染较为严重。
因此本文尝试采用气雾化FeSiAl磁粉为原料,以水为溶剂的磷化方案,结合热处理的方式,以进一步降低FeSiAl磁粉芯的功率损耗,提高磁粉芯的磁性能。
1. 实验材料及方法
实验所用气雾化FeSiAl磁粉(颗粒粒径<74 μm)为马鞍山新康达磁业股份有限公司提供,浓磷酸(浓度>85 wt%)购自山东满堂红新材料有限公司,硬脂酸锌(颗粒粒径<13 μm)购自灵寿县中石恒达矿产品加工厂,硅树脂购自山东大易化工有限公司。磷酸加入量分别为磁粉质量的0.1 wt%、0.2 wt%、0.3 wt%、0.4 wt%、0.5 wt%;与磁粉混合均匀后加热机械搅拌至干燥;在680℃、N2气氛下热处理1 h,再分别添加磁粉质量0.5 wt%硅树脂粘结剂和0.3 wt%硬脂酸锌脱模剂;在
2090 MPa下将磁粉压制成环形试样(外径26.92 mm、内径 14.73 mm、高度 11.10 mm)。压制成型的试样在680℃、N2气氛下退火1 h,得到复合磁粉芯样品,实验流程如图1所示。按照磷酸含量从小到大,将磷化后磁粉未预热处理的样品编号为0.1 wt%HP/FeSiAl、0.2 wt%HP/FeSiAl、0.3 wt%HP/FeSiAl、0.4 wt%HP/FeSiAl、0.5 wt%HP/ FeSiAl;同理磷化经预热处理后的样品编号为0.1~ 0.5 wt%HPT/FeSiAl。采用带有能谱仪(EDS)的JSM-7800型号扫描电子显微镜(SEM)观察样品的微观形貌;用Microtest63770 LCR计测量磁粉芯在1~
1000 kHz下的有效磁导率(μe)。用ST2643型超高阻、微电流测试仪测量磁粉芯体电阻率(ρv)。用SY8216 B-H功率分析仪测量了磁粉芯100 mT、10~150 kHz的功率损耗(Pcv);用日本理学Ultima IV 型号X射线衍射(XRD)对样品进行物相分析。用Micro Sense公司生产的EZ7型振动样品磁强计(VSM)测量样品的饱和磁化强度(Ms)和矫顽力(Hc)。用日本岛津公司生产的IRAffinity型傅里叶变换红外光谱仪(FTIR)测试了磁粉的红外吸收光谱。用赛默飞世尔科技公司生产的EscaLab 250 Xi型X射线光电子能谱仪(XPS)测试了磁粉的表面元素价态。2. 结果与讨论
2.1 颗粒微观形貌
磁粉在磷化后及磷化预热处理后颗粒形貌分别如图2(a)、(b)所示。图2(a)中大颗粒和小颗粒分散,有少量团聚现象;而图2(b)中小颗粒和大颗粒相结合,少量小颗粒分散在大颗粒周围;这是因为磷化后磁粉颗粒团聚,但结合容易脱落,经过预热处理增强了颗粒之间的结合,导致小颗粒聚集在大颗粒上。图2(c)为磷化后磁粉颗粒形貌及其表面元素分布图。磁粉颗粒表面除了Fe、Si、Al外,O、P元素分布均匀。
2.2 磁粉芯密度与有效磁导率
图3 (a)、(b)分别为磁粉芯的密度(ρ)和有效磁导率(μe)与磷酸含量的关系图。由图3(a)知,在磷酸加入量为0.1~0.5 wt%范围内,HP/FeSiAl磁粉芯ρ值无明显变化;HPT/FeSiAl磁粉芯ρ值在相同磷酸加入量时小于前者,且随磷酸加入量增加而减小,从5.89 g·cm−3减小到5.83 g·cm−3。从图2(a)、(b) 中可知,预热处理后小颗粒磁粉聚集在大颗粒磁粉上,在后续压制成型过程中小颗粒不能更好的滑动并填充到大颗粒之间的气隙中,导致其密度的降低;随磷酸加入量的增加,预热处理后的磁粉颗粒聚集现象更加明显,进一步降低了磁粉芯密度。HP/FeSiAl和HPT/FeSiAl磁粉芯μe和其ρ值趋势一致。磁粉芯主要由磁性物质、绝缘物质和气隙组成,磁粉芯ρ降低,则同体积下磁性物质含量降低导致其μe下降[8, 9],0.5 wt%HPT/FeSiAl相较0.1 wt%HPT/FeSiAl 磁粉芯μe从74.52下降到52.10。在相同磷酸加入量时,经过预热处理后的磁粉芯具有更低的ρ和μe。
2.2 磁粉芯的功率损耗
图4为磁粉芯样品在10~150 kHz间功率损耗(Pcv)随频率(f )变化关系,由图4可知,随着磷酸加入量的增加,HP/FeSiAl和HPT/FeSiAl磁粉芯Pcv均呈现下降趋势;且在相同磷酸加入量时HPT/FeSiAl磁粉芯Pcv更低,0.5 wt%HP/FeSiAl、0.5 wt%HPT/FeSiAl磁粉芯Pcv分别为79.44 mW·cm−3和58.56 mW·cm−3。
磁粉芯的Pcv分为三个部分,分别为涡流损耗(Pe)、磁滞损耗(Ph)、剩余损耗(Pr)[10-12]。涡流损耗是在磁芯线圈中加上交流电压时因磁芯材料存在电阻,线圈中激励电流流过时产生的损耗;磁芯电阻率越大则磁粉颗粒间产生的涡流效应越小,相应地磁芯的涡流损耗减小[13]。当磁芯的外加磁场去除时磁芯中的一部分磁畴随之发生转动恢复
原来的方向,然而另一部分磁畴需要克服畴壁的摩擦发生刚性转动而保持磁化方向,这部分克服摩擦消耗掉的能量即为磁滞损耗[14]。剩余损耗是由于磁化弛豫效应或磁性滞后效应引起的损耗。剩余损耗占比很小可忽略不计[15],因此对功率损耗进行损耗分离可只考虑涡流损耗与磁滞损耗两部分。公式如下所示:
Pcv=Pe+Ph+Pr (1) 涡流损耗Pe包括颗粒间(Ptere)和颗粒内部的涡流损耗(Ptrae),分别表示为如下公式:
Ptere=CtereB2mf2 (2) Ptrae=CtraeB2mf2 (3) 其中Ctere和Ctrae分别为颗粒间和颗粒内的涡流系数,Bm为最大磁通密度,f为频率。
磁滞损耗Ph与准静态磁滞回线的面积和频率f成正比,可以表示为:
Ph=ChBmf (4) 其中Ch为磁滞系数。
忽略Pr后,将各组样品100 mT、10~150 kHz下Pcv进行损耗分离,拟合得到如图5所示结果,其中0.5 wt%HP/FeSiAl和0.5 wt%HPT /FeSiAl磁粉芯损耗分离拟合结果和电阻率(ρv)见表1。由图5(a)、(b),同系列之间的Pe差别不明显,预热处理后Pe略有下降;由图5(c)、(d)可知,两种处理方式得到的磁粉芯Ph随着磷酸加入量增加而显著下降,因此Ph的降低是导致磁粉芯Pcv下降的主要原因。磷酸加入量相同时经预热处理后磁粉芯的Ph更低,由表1,0.5 wt%HP/FeSiAl样品Ph为35.03 mW·cm−3,0.5 wt%HPT/FeSiAl样品为16.17 mW·cm−3。
Sample Core loss/(mW·cm−3) Eddy current coefficient Eddy current loss/(mW·cm−3) Hysteresis coefficient Hysteresis loss/(mW·cm−3) Electrical resistivity/(Ω·cm) 0.5 wt%HP/FeSiAl 79.44 1.74×10−6 43.53 7.01×10−3 35.03 25.23×106 0.5 wt%HPT/FeSiAl 58.56 1.63×10−6 40.73 3.23×10−3 16.17 2.48×106 Notes: Bm—Maximum magnetic induction intensity=100 mT; f—Frequency=50 kHz 图6是将 FeSiAl原料与经过680℃、N2热处的FeSiAl磁粉进行XRD分析的结果;经过680℃、N2热处理的FeSiAl磁粉在(220)晶面的衍射峰向小角度偏移,这是因为晶胞参数增大;根据高斯函数拟合并使用Debye-Scherrer公式可得到磁粉的平均晶粒尺寸。预热处理后FeSiAl磁粉晶粒平均尺寸由未预热处理的32.66 nm增大到40.85 nm。根据报道[16, 17]磷化后的磁粉经过高温热处理可使颗粒中晶界减少,晶粒尺寸增大,从而削弱了对磁畴壁的钉扎效应,使其矫顽力(Hc)减小。因此经预热处理后磁粉芯Ph减小可能是由其晶粒平均尺寸增大导致。
使用Micro Sense公司生产的EZ7型振动样品磁强计对0.1 wt%HP/FeSiAl、0.3 wt%HP/FeSiAl、0.5 wt%HP/FeSiAl、0.1 wt%HPT/FeSiAl、0.3 wt% HPT/FeSiAl、0.5 wt%HPT/FeSiAl磁粉样品进行了磁滞回线的分析,得到图7中的磁滞回线。上述磁粉饱和磁化强度(Ms)在113.16 emu·g−1 ~120.07 emu·g−1之间;两种处理方式得到的磁粉Ms均随磷酸加入量增加而降低;预热处理后Ms更低,但降低幅度较小。图7中磁粉的Hc与图5中Ph变化趋势一致。Hc越大意味着磁畴壁转动需要克服的摩擦力越大,转动时损耗的能量就更大,在外加磁场循环过程中对应的Ph升高[3, 21]。
本文与此前报道的FeSiAl基磁粉芯及马鞍山新康达磁业有限公司提供的商用FeSiAl磁粉芯Pcv和μe进行对比,结果如表2,可得本实验制备的磁粉芯具有超低的Pcv,完全满足商用标准。
Sample Core loss/(mW·cm−3) Permeability Refs f=50 kHz f=100 kHz 0.5 wt%HPT/FeSiAl 58.56 190.1 52.1 (f=100 kHz) This work SiO2@FeSiAl 77.6 216.53 57(f=1 MHz) [18] MoS2/FeSiAl 181 454 90.6(f=1 MHz) [19] 2.25 wt%WS2/FeSiAl 171 431 62~64(f=50 kHz) [20] Commercially SMCs <120 60(f=100 kHz) NCD Co., Ltd. Notes:Bm—Maximum magnetic induction intensity=100 mT; f—Frequency; SiO2@FeSiAl—SiO2 coated spherical-FeSiAl SMC;MoS2/FeSiAl and 2.25 wt%—WS2/FeSiAl MoS2 and 2.25 wt%WS2 coated FeSiAl SMCs respectively;Commercially SMCs—Atomized FeSiAl SMCs produced by Ma’anshan New Conda Magnetic Industrial Co., Ltd. 2.3 磁粉表面磷化层分析
将未经处理、磷化后和磷化后经预热处理的FeSiAl磁粉分别进行XPS测试,得到了样品的Fe2p、Si2p和Al2p图谱。如图8-10所示。图8(a)中Fe2p特征峰可被分解为位于706.7 eV、710.57 eV、712.65 eV的三个峰,分别对应于金属Fe、Fe2+和Fe3+。根据金属Fe的特征峰所占面积比例计算出其含量占比为13.99%;Fe主要以氧化物的形式存在于颗粒表面,这是在其生产过程中被高温蒸汽氧化所致[22];Fe2+和Fe3+的占比分别是40.35%、45.66%。除Si0与Al0外,在Si2p与Al2p的图谱中分别观察到了Si4+ (101.69 eV)、Al3+(74.04 eV)特征峰的存在。综上结果,在FeSiAl磁粉颗粒表面主要由FeO、Fe2O3、SiO2、Al2O3等氧化物组成,另有少量单质Fe、Si和Al。
将FeSiAl粉磷化后进行XPS分析,结果如图9。Fe2p图谱中Fe2p3/2 (713.59 eV)特征峰对应为Fe3+;观察到磁粉表面Fe、Fe2+的特征峰消失,磷酸将Fe与FeO氧化,反应产物主要是FePO4[23, 24]。Al2p图谱中只剩下Al3+的特征峰,这对应磷化反应生成的铝磷酸盐,事实上磷化层中铝磷酸盐含量更大[25]。为了进一步了解磷化层中的化学组成,另制备了5 wt%磷酸磷化FeSiAl磁粉并进行XRD和FTIR测试得到如图10图谱,由图10(a)可知即使提高磷酸加入量,检测到的AlPO4衍射峰也十分微弱。在图10(b)磷化后的FeSiAl磁粉FTIR光谱中检测到位于
1084 cm−1、558 cm−1、509 cm−1的三个峰是属于PO43-的特征振动峰[26]。综上磁粉表面主要由AlPO4、FePO4、SiO2等物质组成。在磷化处理过程中磁粉表面发生的主要反应如下:2FeO+2H3PO4=2FePO4+2H2O+H2 (5) 2Fe+2H3PO4=2FePO4+3H2 (6) Fe2O3+2H3PO4=2FePO4+H2O (7) Al2O3+2H3PO4=2AlPO4+H2O (8) 图11为磷化后经过预热处理磁粉的XPS分析图谱。由图可知,Fe2p的谱图中出现了Fe2+与少量Fe0特征峰,而Fe3+特征峰消失。根据报道[27, 28],结合图10(b)中Si2p (102.52 eV)峰的位置,由于高温磷化层中的物质发生了转化:即FePO4分解产生Fe2O3与P2O5,内部Fe被氧化为FeO后,再与Fe2O3、SiO2反应生成Fe2SiO4和金属Fe,AlPO4分解成为Al2O3和P2O5。图10(a)中经过预热处理的磁粉中出现了Fe2SiO4的衍射峰,Fe2SiO4是Fe 占中心的八面体结构,在图10(b)中观察到位于
1070 cm−1和642.8 cm−1处的吸收峰分别来自SiO4四面体的Si-O键不对称伸缩振动峰和FeO6 八面体的Fe-O键不对称伸缩振动峰[29, 30]。在图10(b)中位于1119 cm−1和923 cm−1的吸收峰分别是来自P2O5的P=O和O—P—O键的不对称伸缩振动峰[25, 31]。预热处理过程中反应如下:2FePO4=Fe2O3+P2O5 (9) 2Fe+O2=2FeO (10) Fe2O3+FeO+SiO2=Fe2SiO4+Fe (11) 2AlPO4=Al2O3+P2O5 (12) 综合XPS和FTIR的分析结果,图12展示了磁粉在磷化及预热处理过程中磁粉表面的可能反应过程。预热处理后,磁粉内晶界减少,且表面反应产生的Fe使磁粉芯电阻率(ρv)降低,表1中0.5 wt%HP/ FeSiAl样品ρv为25.23×106 Ω·cm,0.5 wt%HPT/ FeSiAl样品降低至2.48×106 Ω·cm。磁粉芯的颗粒内涡流损耗Ptrae分为经典涡流损耗和异常涡流损耗[32],经典涡流损耗是由颗粒内均匀流动的涡流产生,异常涡流损耗为磁畴壁的运动而在磁畴周围产生的微观涡流损耗。根据报道[32, 33]磁粉芯经过预热处理后高电阻率的晶界减少会导致经典涡流损耗上升,但经典涡流损耗占比极小;而占比较大的异常涡流损耗在预热处理后降低;因此导致了0.5 wt%HPT/FeSiAl相较0.5 wt%HP /FeSiAl磁粉芯Pe略微下降。
3. 结 论
(1)使用磷酸水溶液作为磷化剂,复合磁粉芯Pcv随着磷酸使用量的增加而减小,磷酸含量从0.1 wt%增加到0.5 wt%时,磁粉芯功率损耗从127.80 mW·cm−3下降到79.44 mW·cm−3 (50 kHz、100 mT);由于非磁性物质的增加,磁粉芯μe也降低。
(2)磷化磁粉经过预热处理后,磁粉晶粒长大,晶界减少,复合磁粉芯的磁滞损耗大幅降低,当磷酸用量为0.5 wt%时,磁粉芯Pcv从79.44 mW·cm−3降低至58.56 mW·cm−3 (50 kHz、100 mT)。
(3)磷化后的FeSiAl磁粉颗粒表面磷化层主要有AlPO4、FePO4等物质构成;经过预热处理的磁粉磷化层发生变化,表面主要物质可能为Al2O3、Fe2SiO4、P2O5与单质铁等;由于晶界减少和单质铁的生成,预热处理后复合磁粉芯电阻率有所下降,但仍保持较高水平。
-
图 3 用于探测表面结冰的不同种类传感器:(a)双分环微波谐振传感器[56];(b)单分环微波谐振传感器[57];(c)贴片天线微波传感器[58];(d)具有尖锐带通响应的微波谐振传感器[59];(e)电容式传感器[60];(f)光纤传感器[61]
Figure 3. Different types of sensors used to detect surface icing: (a) Double split-ring microwave resonator[56]; (b) Single split-ring microwave resonator[57]; (c) Patch antenna microwave sensor[58]; (d) Microwave resonator with a sharp bandpass response[59]; (e) Capacitive sensor[60]; (f) Optical fiber sensor[61]
t—Time; T—Temperature
图 4 双分环微波谐振传感器跟踪表征水冷凝、结冰、冰生长及室温解冻全过程[56]:(a)整个过程中谐振器的频谱响应;谐振响应的谐振振幅(b)、谐振频率(c)和品质因子(d)随时间的变化
Figure 4. Double split-ring microwave resonant sensor track and characterize the entire process of water condensation, freezing, ice growth and room temperature thawing[56]: (a) Spectrum response of the resonator throughout the entire process; Variation of resonance amplitude (b), resonance frequency (c) and quality factor (d) over time
S21—Scattering parameter
图 5 单分环微波谐振传感器在不同响应过程中谐振振幅随时间的变化[57]:(a)超疏水表面和未处理表面上的液滴冻结;(b)超疏水表面和未处理表面上的水冷凝和冰生长;(c)加热和室温条件下冰滴的融化
Figure 5. Variation of resonant amplitude over time in a single split-ring microwave resonant sensor under different response processes[57]: (a) Freezing of the water droplet on superhydrophobic and untreated surface; (b) Water condensation and ice growth on superhydrophobic and untreated surface; (c) Melting of the ice droplet under heating and room temperature
图 9 智能混合防/除冰系统中谐振传感器的响应[59]:(a)有LIT涂层覆盖的和无LIT涂层覆盖的谐振传感器的散射参数S21频谱响应;(b)智能混合防/除冰系统的传感器分别对水、粘附冰、分离冰和基线状态下的响应;谐振振幅(c)和谐振频率(d)在整个结冰/除冰过程中随时间的变化
Figure 9. Resonant sensor's response of the smart hybrid anti-/de-icing system[59]: (a) S21 spectrum response of the resonant sensor with and without the LIT coating coverage; (b) Smart hybrid system's sensor response to water, adhered ice, detached ice and the bare sensor; Variation of resonant amplitude (c) and resonant frequency (d) over time during the icing/de-icing process
图 10 介质阻挡放电(DBD)等离子体致动器除冰过程中电容和电荷随时间的动态变化(a)及对应的实物图(b)[78]
Figure 10. Dynamic changes of capacitance and charge over time (a) and corresponding physical images (b) during the de-icing process of dielectric barrier discharge (DBD) plasma actuator[78]
qmax—Maximum value of electric charge quantity; Ceq—Equivalent capacitance
图 11 外场驱动下可动态防/除冰的形状记忆聚合物:(a)形状记忆氧化石墨烯/环氧树脂(GO/EP)复合材料的防/除冰结构示意图[80];(b)近红外光响应下能原位可逆转换表面微观结构的超疏水形状记忆聚合物[82]
Figure 11. Shape memory polymer for dynamic anti-/de-icing under external field driving: (a) Schematic of anti-/de-icing structure based on the shape memory graphene oxide/epoxy resin (GO/EP) composite[80]; (b) Superhydrophobic shape memory polymer that can reversibly convert surface microstructure in situ under near-infrared light response[82]
NIR—Near-infrared; MWCNT—Multiwalled carbon nanotubes
图 12 光热驱动响应的智能防/除冰涂层:(a) Fe3O4/氟化环氧树脂的光热性质和超疏水性[96];(b)利用沉淀法和逐层喷涂法制备环氧树脂(ER)/绣球状ZnO (H-ZnO)@CuS/聚二甲基硅氧烷(PDMS)光热超疏水涂层[98];(c) 全水性光热超疏水涂层(PCPAS)优异的防/除冰性能[101]
Figure 12. Smart anti-/de-icing coatings for photothermal driven response: (a) Photothermal properties and superhydrophobicity of Fe3O4/fluorinated epoxy resin[96]; (b) Preparation of epoxy resin (ER)/hydrangea-like ZnO (H-ZnO)@CuS/polydimethylsiloxane (PDMS) photothermal superhydrophobic coating using precipitation and layer-by-layer spraying method[98]; (c) Excellent anti-/de-icing performance of all-waterborne superhydrophobic photothermal coating (PCPAS)[101]
NPs—Nanoparticle; CPAS—CNT@PDA-Ag-NDT; CNT—Carbon nanotubes; PDA—Polydopamine; NDT—1-dodecanethiol; PFA—Fluorine-containing polyacrylic emulsion; WCA—Water contact angle
图 13 温度驱动响应的智能防/除冰涂层:(a)碱腐蚀和机械破坏的SiO2-氟化聚氨酯(FPU)涂层在高温诱导自修复前后的微观形貌对比[107];(b)相变微胶囊(MPCM)/永久室温硫化(PRTV)涂层中相变微胶囊吸收和释放潜热增强防/除冰性能[108]
Figure 13. Smart anti-/de-icing coatings for temperature driven response: (a) Comparison of SEM images of SiO2-fluorinated polyurethane (FPU) coatings subjected to alkali etching and mechanical damage before and after high-temperature induced self-healing[107]; (b) Phase change microcapsules in phase change microcapsules (MPCM)/permanent room temperature vulcanized (PRTV) coatings enhancing anti-/de-icing performance by absorbing and releasing latent heat[108]
表 1 主被动防/除冰技术原理及其优缺点
Table 1 Principles, advantages and disadvantages of active and passive anti-/de-icing technologies
Technology Principle Advantage Disadvantage Active methods Mechanical methods Utilizing external forces such as aerodynamic force, shear stress or vibration, for example, electro-impulse[33], pneumatic impulse[34]
and ultrasonic[35]Mature technology, de-icing thoroughly, and suitable for thicker ice layers Complex design, additional equipment, low work efficiency and severe surface damage Thermal
methodsHeating the surfaces through Joule heating, electromagnetic energy conversion or compressed air, for example, electric heating[36], microwave heating[37] and hot air[38] Suitable for large-scale de-icing, with faster speed and less surface damage High energy consumption, high cost, requiring frequent manual operation and regular maintenance Chemical
methodsUsing solid or liquid anti-icing agents to inhibit the formation of ice by lowering the freezing point[39] Good effect, widely used on the ground High cost and serious environmental pollution Passive methods Superhydrophobic surfaces Contact angle >150°, sliding angle <5°, with low surface energy and micro-nano rough hierarchical structure. Droplets maintain non-wetting in Cassie-Baxter state[40-41]. Promote rebound and combination of the droplets, prevent heat exchange with the substrate, thus result in excellent anti-icing performance[42] The freezing of condensate droplets under low temperature and high humidity actually increases the ice adhesion, leading to loss of hydrophobicity. Meanwhile, environmental erosion can damage the structure and chemical composition of surfaces[43]. Slippery liquid-infused porous surfaces The surface is smooth and uniform, the lubricant has high affinity and is water-immiscible. The extremely low contact angle hysteresis can promote the sliding of droplets[44]. Significantly delay the formation and accumulation of ice, resulting in a decrease of 1-2 orders of magnitude in ice adhesion strength[45]. Lubricant finally loses the anti-/de-icing performance due to evaporation, shedding and mechanical wear[46]. Low-modulus elastomer coatings The stiffness inhomogeneity between the coatings and ice can cause deformation incompatibility, leading to interface cavitation[47]. Coatings can also induce local stress concentration at the interface, leading to crack initiation and propagation[48]. Significantly weaken the ice adhesion strength without damaging the entire interface. After multiple cycles of icing and de-icing, the poor mechanical properties of the coatings seriously limit the durability[49]. Low-interfacial toughness materials (LIT) When the interface's macroscopic length is greater than the cohesive length, de-icing performance is dominated by interfacial toughness rather than interfacial strength[50-51]. The energy dissipated by creating a unit area of new crack is equivalent to the interfacial toughness. The de-icing force maintain constant. The research is still in initial stage, and the factors affecting properties of LIT materials are not yet clear[52]. -
[1] YAMAZAKI M, JEMCOV A, SAKAUE H. A review on the current status of icing physics and mitigation in aviation[J]. Aerospace, 2021, 8(7): 188. DOI: 10.3390/aerospace8070188
[2] POTAPCZUK M G. Aircraft icing research at NASA glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276. DOI: 10.1061/(ASCE)AS.1943-5525.0000322
[3] CALISKAN F, HAJIYEV C. A review of in-flight detection and identification of aircraft icing and reconfigurable control[J]. Progress in Aerospace Sciences, 2013, 60: 12-34. DOI: 10.1016/j.paerosci.2012.11.001
[4] JACKSON D G. Primary ice detection certification under the new FAA and EASA regulations, SAE Technical Paper-2015-01-2105[R]. Warrendale PA: SAE International, 2015.
[5] DALILI N, EDRISY A, CARRIVEAU R. A review of surface engineering issues critical to wind turbine performance[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 428-438. DOI: 10.1016/j.rser.2007.11.009
[6] 刘韬文, 蒙文川, 戴承伟, 等. 风力发电机防冻融冰综述[J]. 湖北电力, 2019, 43(1): 10-17. LIU Taowen, MENG Wenchuan, DAI Chengwei, et al. An overview of wind turbine generator anti-freezing and deicing[J]. Hubei Electric Power, 2019, 43(1): 10-17(in Chinese).
[7] FAKOREDE O, FEGER Z, IBRAHIM H, et al. Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 662-675. DOI: 10.1016/j.rser.2016.06.080
[8] ZHOU Z, YI X, JIANG W, et al. Quantitative detection method for icing of horizontal-axis wind turbines[J]. Wind Energy (Chichester, England), 2019, 22(3): 433-446. DOI: 10.1002/we.2297
[9] PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: Critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. DOI: 10.1016/j.coldregions.2010.01.005
[10] DEMARTINO C, KOSS H H, GEORGAKIS C T, et al. Effects of ice accretion on the aerodynamics of bridge cables[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 138: 98-119. DOI: 10.1016/j.jweia.2014.12.010
[11] MATEJICKA L, GEORGAKIS C T. A review of ice and snow risk mitigation and control measures for bridge cables[J]. Cold Regions Science and Technology, 2022, 193: 103429. DOI: 10.1016/j.coldregions.2021.103429
[12] MATEJICKA L, GEORGAKIS C T, SCHWARZ A, et al. Cable surface for the reduction of risk associated with bridge cable ice accretions[J]. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2019, 29(3): 425-432.
[13] MATEJICKA L, GEORGAKIS C T, KOSS H H, et al. Ice-shedding and aerodynamic investigations of bridge cables with steel wire meshes[C]//IABSE Congress—Resilient Technologies for Sustainable Infrastructure. New York: Curran Associates Inc, 2021, 1: 94-102.
[14] ABDELAAL A, NIMS D, JONES K, et al. Prediction of ice accumulation on bridge cables during freezing rain: A theoretical modeling and experimental study[J]. Cold Regions Science and Technology, 2019, 164: 102782. DOI: 10.1016/j.coldregions.2019.102782
[15] DEHGHANI-SANIJ A R, DEHGHANI S R, NATERER G F, et al. Marine icing phenomena on vessels and offshore structures: Prediction and analysis[J]. Ocean Engineering, 2017, 143: 1-23. DOI: 10.1016/j.oceaneng.2017.07.049
[16] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Physics of icing and rational design of surfaces with extraordinary icephobicity[J]. Langmuir, 2015, 31(17): 4807-4821. DOI: 10.1021/la502586a
[17] BLACKFORD J R. Sintering and microstructure of ice: A review[J]. Journal of Physics D—Applied Physics, 2007, 40(21): R355-R385. DOI: 10.1088/0022-3727/40/21/R02
[18] ZHANG Z, LIU X. Control of ice nucleation: Freezing and antifreeze strategies[J]. Chemical Society Reviews, 2018, 47(18): 7116-7139. DOI: 10.1039/C8CS00626A
[19] Federal Aviation Administration. In-flight icing[EB/OL]. (2024-09-24)[2024-11-02].
[20] Climate-Science Press. America's big chill: Wind turbines frozen solid & solar panels plastered in snow & ice[EB/OL]. (2021-02-21)[2024-11-02].
[21] Dispatch Ice Pilots. Ice navigation procedures[EB/OL]. (2024-10-26)[2024-11-02].
[22] CAO Y, TAN W, WU Z. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. DOI: 10.1016/j.ast.2017.12.028
[23] CZERNKOVICH N. Understanding in-flight icing[C]//Transport Canada Aviation Safety Seminar. Canada: Transport Canada, 2004, 55(1): 1-21.
[24] VUKITS T. Overview and risk assessment of icing for transport category aircraft and components[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston VA: AIAA, 2002, 811: 1-30.
[25] JANJUA Z A, TURNBULL B, HIBBERD S, et al. Mixed ice accretion on aircraft wings[J]. Physics of Fluids (1994), 2018, 30(2): 027101. DOI: 10.1063/1.5007301
[26] ÇETINDEMIR O, ZÜLFIKAR A C, YEŞILYURT A. Structural health monitoring of bridge structures in cold climates[C]//SHMII-11: 11th International Conference on Structural Health Monitoring of Intelligent Infrastructure. Winnipeg: ISHMII, 2022, T11-01: 349-352.
[27] MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939. DOI: 10.1098/rsta.2000.0690
[28] BOSE N. Icing on a small horizontal-axis wind turbine—Part 1: Glaze ice profiles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 45(1): 75-85. DOI: 10.1016/0167-6105(92)90006-V
[29] DESHPANDE S, SÆTERDAL A, SUNDSBØ P. Sea spray icing: The physical process and review of prediction models and winterization techniques[J]. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143(6): 061601. DOI: 10.1115/1.4050892
[30] DEHGHANI-SANIJ A R, DEHGHANI S R, NATERER G F, et al. Sea spray icing phenomena on marine vessels and offshore structures: Review and formulation[J]. Ocean Engineering, 2017, 132: 25-39. DOI: 10.1016/j.oceaneng.2017.01.016
[31] YANG F, ZHANG A. The effect of icing of sea spray on ship structure in ice zone[J]. Applied Mechanics and Materials, 2012, 253-255: 2197-2200. DOI: 10.4028/www.scientific.net/AMM.253-255.2197
[32] DHYANI A, CHOI W, GOLOVIN K, et al. Surface design strategies for mitigating ice and snow accretion[J]. Matter, 2022, 5(5): 1423-1454. DOI: 10.1016/j.matt.2022.04.012
[33] ENDRES M, SOMMERWERK H, MENDIG C, et al. Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel[J]. CEAS Aeronautical Journal, 2017, 8(3): 429-439. DOI: 10.1007/s13272-017-0249-0
[34] 于周, 舒立春, 胡琴, 等. 风机叶片气动脉冲除冰结构脱冰计算模型及试验验证[J]. 电工技术学报, 2023, 38(13): 3630-3639. YU Zhou, SHU Lichun, HU Qin, et al. De-icing calculation model of pneumatic impulse de-icing structure for wind turbine blades and experiment verification[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3630-3639(in Chinese).
[35] WANG Z. Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft[J]. Energy and Buildings, 2017, 140: 42-49. DOI: 10.1016/j.enbuild.2017.01.072
[36] WU X, LIAO Y, YAO L, et al. A non-percolative rGO/XLPE composite with high electrothermal performance at high voltage and effective de/anti-icing for transmission-lines[J]. Composites Science and Technology, 2022, 230: 109772. DOI: 10.1016/j.compscitech.2022.109772
[37] ZHAO J, WANG X, XIN L, et al. Concrete pavement with microwave heating enhancement functional layer for efficient de-icing: Design and case study[J]. Cold Regions Science and Technology, 2023, 210: 103846. DOI: 10.1016/j.coldregions.2023.103846
[38] LI L, LIU Y, TIAN L, et al. An experimental study on a hot-air-based anti-/de-icing system for aero-engine inlet guide vanes[J]. Applied Thermal Engineering, 2020, 167: 114778. DOI: 10.1016/j.applthermaleng.2019.114778
[39] RAMACHANDRAN R, KOZHUKHOVA M, SOBOLEV K, et al. Anti-icing superhydrophobic surfaces: Controlling entropic molecular interactions to design novel icephobic concrete[J]. Entropy (Basel, Switzerland), 2016, 18(4): 132. DOI: 10.3390/e18040132
[40] JEEVAHAN J, CHANDRASEKARAN M, JOSEPH B G, et al. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. DOI: 10.1007/s11998-017-0011-x
[41] JIANG S, DIAO Y, YANG H. Recent advances of bio-inspired anti-icing surfaces[J]. Advances in Colloid and Interface Science, 2022, 308: 102756. DOI: 10.1016/j.cis.2022.102756
[42] LI W, ZHAN Y, YU S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. DOI: 10.1016/j.porgcoat.2020.106117
[43] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese).
[44] WONG T, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. DOI: 10.1038/nature10447
[45] KIM P, WONG T, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577. DOI: 10.1021/nn302310q
[46] WANG G, GUO Z. Liquid infused surfaces with anti-icing properties[J]. Nanoscale, 2019, 11(47): 22615-22635. DOI: 10.1039/C9NR06934H
[47] BEEMER D L, WANG W, KOTA A K. Durable gels with ultra-low adhesion to ice[J]. Journal of Materials Chemistry A, 2016, 4(47): 18253-18258. DOI: 10.1039/C6TA07262C
[48] HE Z, XIAO S, GAO H, et al. Multiscale crack initiator promoted super-low ice adhesion surfaces[J]. Soft Matter, 2017, 13(37): 6562-6568. DOI: 10.1039/C7SM01511A
[49] LI J, JIAO W, JIN H, et al. Robust polyurea icephobic coatings with static large-scale de-icing and dynamic anti-icing performance[J]. Chemical Engineering Journal, 2023, 478: 147339. DOI: 10.1016/j.cej.2023.147339
[50] GOLOVIN K, DHYANI A, THOULESS M D, et al. Low-interfacial toughness materials for effective large-scale deicing[J]. Science (American Association for the Advancement of Science), 2019, 364(6438): 371-375. DOI: 10.1126/science.aav1266
[51] MOHSENI M, RECLA L, MORA J, et al. Quasicrystalline coatings exhibit durable low interfacial toughness with ice[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36517-36526.
[52] 金浩正, 矫维成, 李君, 等. 低冰粘附防/除冰涂层的技术现状及研究趋势[J]. 复合材料学报, 2024, 41(5): 2191-2210. JIN Haozheng, JIAO Weicheng, LI Jun, et al. Technology status and research trend of low-ice-adhesion anti-icing and de-icing coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2191-2210(in Chinese).
[53] SHI K, DUAN X. A review of ice protection techniques for structures in the arctic and offshore harsh environments[J]. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143(6): 064502. DOI: 10.1115/1.4050893
[54] SHEN Y, WU X, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. DOI: 10.1016/j.pmatsci.2019.03.004
[55] ZHUO Y, XIAO S, AMIRFAZLI A, et al. Polysiloxane as icephobic materials—The past, present and the future[J]. Chemical Engineering Journal, 2021, 405: 127088. DOI: 10.1016/j.cej.2020.127088
[56] WILTSHIRE B, MIRSHAHIDI K, GOLOVIN K, et al. Robust and sensitive frost and ice detection via planar microwave resonator sensor[J]. Sensors and Actuators B: Chemical, 2019, 301: 126881. DOI: 10.1016/j.snb.2019.126881
[57] KOZAK R, WILTSHIRE B D, KHANDOKER M A R, et al. Modified microwave sensor with a patterned ground heater for detection and prevention of ice accumulation[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55483-55492.
[58] KOZAK R, KHORSAND K, ZARIFI T, et al. Patch antenna sensor for wireless ice and frost detection[J]. Scientific Reports, 2021, 11(1): 13707. DOI: 10.1038/s41598-021-93082-2
[59] DIJVEJIN Z A, JAIN M C, KOZAK R, et al. Smart low interfacial toughness coatings for on-demand de-icing without melting[J]. Nature Communications, 2022, 13(1): 5119. DOI: 10.1038/s41467-022-32852-6
[60] ZHI X, CHO H C, WANG B, et al. Development of a capacitive ice sensor to measure ice growth in real time[J]. Sensors (Basel), 2015, 15(3): 6688-6698. DOI: 10.3390/s150306688
[61] ZHANG C, XIAO C, LI S, et al. A novel fiber-optic ice sensor to identify ice types based on total reflection[J]. Sensors (Basel, Switzerland), 2023, 23(8): 3996. DOI: 10.3390/s23083996
[62] MARTIN F, VELEZ P, GIL M. Microwave sensors based on resonant elements[J]. Sensors (Basel), 2020, 20(12): 3375. DOI: 10.3390/s20123375
[63] GARGARI A M, ZARIFI M H, MARKLEY L. Passive matched mushroom structure for a high sensitivity low profile antenna-based material detection system[J]. IEEE Sensors Journal, 2019, 19(15): 6154-6162. DOI: 10.1109/JSEN.2019.2908687
[64] ZARIFI M H. Sensitivity and selectivity enhancement in coupling ring resonator sensors using splitting resonant frequencies[C]//2018 IEEE/MTT-S International Microwave Symposium-IMS. New York: IEEE, 2018: 36-39.
[65] MUGHAL U N, VIRK M S, MUSTAFA M Y. State of the art review of atmospheric icing sensors[J]. Sensors & Transducers, 2016, 198(3): 2-15.
[66] OWUSU K P, KUHN D C S, BIBEAU E L. Capacitive probe for ice detection and accretion rate measurement: Proof of concept[J]. Renewable Energy, 2013, 50: 196-205. DOI: 10.1016/j.renene.2012.06.003
[67] MADI E, POPE K, HUANG W, et al. A review of integrating ice detection and mitigation for wind turbine blades[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 269-281. DOI: 10.1016/j.rser.2018.12.019
[68] ZHU Y, HUANG X, TIAN Y, et al. Experimental study on the icing dielectric constant for the capacitive icing sensor[J]. Sensors (Basel, Switzerland), 2018, 18(10): 3325. DOI: 10.3390/s18103325
[69] STOCKSREITER W, ZANG L H. Compact multifunctional wireless capacitive sensor system and its application in icing detection[J]. Sensors (Basel, Switzerland), 2019, 19(24): 5562. DOI: 10.3390/s19245562
[70] JOE H, YUN H, JO S, et al. A review on optical fiber sensors for environmental monitoring[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1): 173-191. DOI: 10.1007/s40684-018-0017-6
[71] LI W, ZHANG J, YE L, et al. A fiber-optic solution to aircraft icing detection and measurement problem[C]//2009 International Conference on Information Technology and Computer Science. New York: IEEE, 2009, 1: 357-360.
[72] IKIADES A A, SPASOPOULOS D, AMOIROPOULOS K, et al. Detection and rate of growth of ice on aerodynamic surfaces using its optical characteristics[J]. Aircraft Engineering and Aerospace Technology, 2013, 85(6): 443-452. DOI: 10.1108/AEAT-11-2012-0219
[73] ZOU J, YE L, GE J, et al. Novel fiber optic sensor for ice type detection[J]. Measurement, 2013, 46(2): 881-886. DOI: 10.1016/j.measurement.2012.09.020
[74] TAI Y, KAMAL A S A, PARK Y, et al. Real-time monitoring of frost/defrost processes using a tapered optical fiber[J]. IEEE Sensors Journal, 2021, 21(5): 6188-6194. DOI: 10.1109/JSEN.2020.3041443
[75] RODRIGUES F, ABDOLLAHZADEHSANGROUDI M, NUNES-PEREIRA J, et al. Recent developments on dielectric barrier discharge (DBD) plasma actuators for icing mitigation[J]. Actuators, 2023, 12(1): 5.
[76] LIU Y, KOLBAKIR C, HU H, et al. A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation[J]. International Journal of Heat and Mass Transfer, 2018, 124: 319-330. DOI: 10.1016/j.ijheatmasstransfer.2018.03.076
[77] CHEN J, LIANG H, WU Y, et al. Experimental study on anti-icing performance of NS-DBD plasma actuator[J]. Applied Sciences, 2018, 8(10): 1889. DOI: 10.3390/app8101889
[78] ABDOLLAHZADEH M, RODRIGUES F, PASCOA J C. Simultaneous ice detection and removal based on dielectric barrier discharge actuators[J]. Sensors and Actuators A: Physical, 2020, 315: 112361. DOI: 10.1016/j.sna.2020.112361
[79] XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33(6): 2000713. DOI: 10.1002/adma.202000713
[80] CHEN L, ZHANG Y, LIU Z, et al. Effect of graphene oxide doping on anti-/deicing performance of shape memory epoxy resin[J]. Materials Today Communications, 2022, 30: 103025. DOI: 10.1016/j.mtcomm.2021.103025
[81] ZHANG D, CHENG Z, LIU Y. Smart wetting control on shape memory polymer surfaces[J]. Chemistry—A European Journal, 2019, 25(16): 3979-3992. DOI: 10.1002/chem.201804192
[82] WANG Y, SUN Y, XUE Y, et al. Near-infrared light-responsive functionalised surfaces with shape memory microstructure for droplet manipulation and anti-icing/de-icing[J]. Surfaces and Interfaces, 2023, 40: 103056. DOI: 10.1016/j.surfin.2023.103056
[83] ZEHRA S, MOBIN M, ASLAM R, et al. Nanocontainers: A comprehensive review on their application in the stimuli-responsive smart functional coatings[J]. Progress in Organic Coatings, 2023, 176: 107389. DOI: 10.1016/j.porgcoat.2022.107389
[84] CUI G, BI Z, WANG S, et al. A comprehensive review on smart anti-corrosive coatings[J]. Progress in Organic Coatings, 2020, 148: 105821. DOI: 10.1016/j.porgcoat.2020.105821
[85] SVINTERIKOS E, ZUBURTIKUDIS I, KHALIFEH H A, et al. Multifunctional polymer-based coatings for outdoor glass surfaces: A state of the art[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(3): 310-332. DOI: 10.1016/j.aiepr.2023.04.001
[86] ZHUO Y, CHEN J, XIAO S, et al. Gels as emerging anti-icing materials: A mini review[J]. Materials Horizons, 2021, 8(12): 3266-3280. DOI: 10.1039/D1MH00910A
[87] JAMIL M I, ALI A, HAQ F, et al. Icephobic strategies and materials with superwettability: Design principles and mechanism[J]. Langmuir, 2018, 34(50): 15425-15444. DOI: 10.1021/acs.langmuir.8b03276
[88] SHAMSHIRI M, JAFARI R, MOMEN G. Potential use of smart coatings for icephobic applications: A review[J]. Surface & Coatings Technology, 2021, 424: 127656.
[89] WU X, CHEN G Y, OWENS G, et al. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy[J]. Materials Today Energy, 2019, 12: 277-296. DOI: 10.1016/j.mtener.2019.02.001
[90] 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596. DOI: 10.7536/PC180908 GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry, 2019, 31(4): 580-596(in Chinese). DOI: 10.7536/PC180908
[91] MENG F, JU B, ZHANG S, et al. Nano/microstructured materials for solar-driven interfacial evaporators towards water purification[J]. Journal of Materials Chemistry A, 2021, 9(24): 13746-13769.
[92] XIE Z, TIAN Y, SHAO Y, et al. Recent progress in anti-icing and deicing applications of the photothermal conversion materials[J]. Progress in Organic Coatings, 2023, 184: 107834. DOI: 10.1016/j.porgcoat.2023.107834
[93] CONG Q, QIN X, CHEN T, et al. Research progress of superhydrophobic materials in the field of anti-/de-icing and their preparation: A review[J]. Materials, 2023, 16(14): 5151. DOI: 10.3390/ma16145151
[94] ZHOU P, WANG Y, ZHANG X. Bi2Se3 nanosheets-based photothermal composites with hydrophobic surface for synergistic anti-/de-icing[J]. Composites Science and Technology, 2023, 233: 109916. DOI: 10.1016/j.compscitech.2023.109916
[95] YIN X, ZHANG Y, WANG D, et al. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance[J]. Advanced Functional Materials, 2015, 25(27): 4237-4245. DOI: 10.1002/adfm.201501101
[96] WU B, CUI X, JIANG H, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310. DOI: 10.1016/j.jcis.2021.01.054
[97] WU X, ROBSON M E, PHELPS J L, et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019, 56: 708-715. DOI: 10.1016/j.nanoen.2018.12.008
[98] BAO Y, YANG H, GAO L, et al. Fabrication of anti-icing/de-icing superhydrophobic composite coating based on hydrangea-like ZnO@CuS[J]. Solar Energy Materials and Solar Cells, 2022, 245: 111838. DOI: 10.1016/j.solmat.2022.111838
[99] DENG L, WANG Z, NIU Y, et al. CNTs-induced superhydrophobic and photothermal coating with long-term durability and self-replenishing property for anti-icing/de-icing[J]. Composites Science and Technology, 2024, 245: 110347. DOI: 10.1016/j.compscitech.2023.110347
[100] SON S M, KIM M, YOO J J, et al. Fabrication of carbon fiber/polyamide 6 composites with water resistance and anti-icing performance using a superhydrophobic fluorinated-polydopamine coating[J]. Composites Science and Technology, 2023, 238: 110048. DOI: 10.1016/j.compscitech.2023.110048
[101] LIU X, LI S, WU Y, et al. Robust all-waterborne superhydrophobic coating with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces, 2023, 15(37): 44305-44313. DOI: 10.1021/acsami.3c09150
[102] WU D Y, MEURE S, SOLOMON D. Self-healing polymeric materials: A review of recent developments[J]. Progress in Polymer Science, 2008, 33(5): 479-522. DOI: 10.1016/j.progpolymsci.2008.02.001
[103] TETTEH E, LOTH E. Reducing static and impact ice adhesion with a self-lubricating icephobic coating (SLIC)[J]. Coatings, 2020, 10(3): 262. DOI: 10.3390/coatings10030262
[104] HEYDARIAN S, JAFARI R, MOMEN G. Recent progress in the anti-icing performance of slippery liquid-infused surfaces[J]. Progress in Organic Coatings, 2021, 151: 106096. DOI: 10.1016/j.porgcoat.2020.106096
[105] CHANG Z, WANG K, WU X, et al. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage[J]. Journal of Energy Storage, 2022, 46: 103840. DOI: 10.1016/j.est.2021.103840
[106] YANCHESHME A A, ALLAHDINI A, MAGHSOUDI K, et al. Potential anti-icing applications of encapsulated phase change material-embedded coatings: A review[J]. Journal of Energy Storage, 2020, 31: 101638. DOI: 10.1016/j.est.2020.101638
[107] FU K, LU C, LIU Y, et al. Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction[J]. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 2021, 404: 127110.
[108] YUAN Y, XIANG H, LIU G, et al. Fabrication of phase change microcapsules and their applications to anti-icing coating[J]. Surfaces and Interfaces, 2021, 27: 101516. DOI: 10.1016/j.surfin.2021.101516
-
目的
开展防/除冰材料与技术的研究对解决各领域的表面结冰问题极为重要。伴随着新装备和新技术的快速发展,具有结冰传感探测、自诊断与控制、外场驱动响应等功能的智能防/除冰技术为解决表面结冰问题提供了新思路。本文以智能技术在防/除冰中的应用为研究对象,阐述了空中、陆地和海洋等不同环境下的结冰原理,在总结归纳主被动防/除冰技术优缺点的基础上,结合智能防/除冰技术的特点,系统地综述了不同结冰传感探测技术的原理及应用、智能技术在防/除冰系统中的应用、以及在外场驱动下可自发响应的智能防/除冰涂层。最后展望了智能技术在防/除冰中的未来研究方向和发展趋势。
结果本文详细综述了智能技术在防/除冰中的应用研究进展:(1)不同环境下的结冰原理千差万别。空中环境结冰主要是由于大量不稳定的过冷水滴沿着气流轨迹冲击表面异相成核,形成明冰、雾凇冰以及二者的混合冰;陆地环境结冰主要是雨雪引起的降水结冰,形成冻雨和湿雪;海洋环境结冰最主要的原因是海水浪花导致的结冰,结冰影响因素众多。(2)用于结冰探测的传感器能够非接触地实时监测和识别冰的形成和生长的瞬态过程。微波谐振传感器和电容式传感器基于水和冰介电常数的差异,通过观测谐振的性能参数或电容值的变化,提供结冰的过程信息;光纤传感器通过结冰前后光传输信号强度的变化,探测表面冰的形成和生长。(3)智能技术在防/除冰系统中的应用可显著提高防/除冰效率。智能混合防/除冰系统可对结冰过程的前后变化进行对比识别,自诊断并控制防/除冰方法是否介入,既大幅度节约了能源,又能延长涂层的寿命;介质阻挡放电(DBD)等离子体致动器不仅能够准确探测表面结冰,还可在电压激励下产生卓越的热效应,用于表面防/除冰;基于形状记忆聚合物的动态防/除冰系统,可在外场驱动下智能改变表面宏观形状和微观结构,延迟结冰或降低冰与表面间的粘附。(4)光热驱动响应的智能防/除冰涂层,可通过填充粒子的光热效应以及表面的超疏水性,显著延缓冰的形成或加速融化表面积冰;温度驱动响应的智能防/除冰涂层一般分为两种,第一种可在高温驱动下自主修复表面损伤,延长涂层寿命,第二种通过相变微胶囊优异的储热能力,延迟结冰及降低冰粘附强度。
结论(1)明晰不同环境下的结冰原理,是开展防/除冰技术研究的前提。(2)结冰传感探测是智能防/除冰的先导与首要。应加快研制新型传感探测技术,监测并收集更多的数据,提高检测准确率。(3)自诊断与控制是智能防/除冰的核心与关键。未来的研究重点是将防/除冰系统和机器学习等数值模拟技术相结合,建立可预测表面结冰的机器学习模型,实时给出是否需要除冰以及除冰到什么程度的定量判断。(4)外场驱动响应是智能防/除冰的预期与目标。今后应继续大力发展智能防/除冰涂层,以及探索其他的外场驱动响应机制。