留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸湿老化后碳纤维增强乙烯基脂树脂复合材料高低温力学性能

魏建辉 刘明 高进城 张裕恒 丁安心

魏建辉, 刘明, 高进城, 等. 吸湿老化后碳纤维增强乙烯基脂树脂复合材料高低温力学性能[J]. 复合材料学报, 2023, 40(6): 3279-3290. doi: 10.13801/j.cnki.fhclxb.20220819.005
引用本文: 魏建辉, 刘明, 高进城, 等. 吸湿老化后碳纤维增强乙烯基脂树脂复合材料高低温力学性能[J]. 复合材料学报, 2023, 40(6): 3279-3290. doi: 10.13801/j.cnki.fhclxb.20220819.005
WEI Jianhui, LIU Ming, GAO Jincheng, et al. Mechanical properties at elevated and cryogenic temperatures of carbon fiber reinforced vinylester resin composites after hygroscopic aging[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3279-3290. doi: 10.13801/j.cnki.fhclxb.20220819.005
Citation: WEI Jianhui, LIU Ming, GAO Jincheng, et al. Mechanical properties at elevated and cryogenic temperatures of carbon fiber reinforced vinylester resin composites after hygroscopic aging[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3279-3290. doi: 10.13801/j.cnki.fhclxb.20220819.005

吸湿老化后碳纤维增强乙烯基脂树脂复合材料高低温力学性能

doi: 10.13801/j.cnki.fhclxb.20220819.005
基金项目: 国家自然科学基金(11902231)
详细信息
    通讯作者:

    丁安心,博士,教授,硕士生导师,研究方向为高分子和复合材料结构固化成型仿真与监测、结构设计和老化评价 E-mail: axding@whut.edu.cn

  • 中图分类号: TB332

Mechanical properties at elevated and cryogenic temperatures of carbon fiber reinforced vinylester resin composites after hygroscopic aging

Funds: National Natural Science Foundation of China (11902231)
  • 摘要: 碳纤维增强乙烯基酯树脂复合材料(CFRP)是海洋和舰船工程领域广泛应用的结构材料,在复杂海洋环境和服役工况下,材料面临湿热和极端温度的考验。本文研究了树脂和CFRP在水浴过程中的质量和形貌变化及水浴吸湿后CFRP在3种测试温度下(−30℃、室温和70℃)的力学性能演变。FTIR和液相色谱-质谱联用实验结果表明乙烯基酯树脂在水浴过程中发生了水解,而吸湿后CFRP的微观形貌观察表明纤维-基体界面的存在会改变树脂基体的吸湿行为。低温、高温和水浴120天后室温测试环境下,CFRP的压缩强度相比未吸湿试样的室温初始强度,分别降低了27.4%、36.2%和32.8%;而低温环境下面内剪切强度提升了35%,高温环境下降低了27%,水浴120天后提升了7%,显示温度对CFRP面内剪切强度的影响大于湿热老化。此外,动态热力学性能测试显示初始阶段的吸湿会导致CFRP储能模量和玻璃化转变温度(Tg)降低,但后期储能模量和Tg会部分恢复。

     

  • 图  1  实验流程图

    Figure  1.  Experimental process diagram

    VARI—Vacuum assisted resin injection; CFRP—Carbon fiber reinforced vinylester resin composite; PTFE—Polytetrafluoroethylene

    图  2  压缩试验 (a) 和面内剪切试验 (b) 标准试样示意图

    Figure  2.  Standard specimens’ configurations for compressive test (a) and in-plane shear test (b)

    图  3  纯树脂试样表面形貌变化和质量变化

    Figure  3.  Evolution of surface morphologies and mass change for pure resin specimens

    图  4  CFRP试样表面形貌变化和质量变化

    Figure  4.  Evolution of surface morphology and mass change for CFRP specimens

    图  5  纯树脂试样的FTIR图谱

    Figure  5.  FTIR spectrogram for pure resin specimens

    图  6  总离子流色谱

    Figure  6.  Total ions chromatograph

    图  7  提取离子流色谱/质谱

    Figure  7.  Extracted ion chromatography and mass spectra

    m/z—Mass-to-charge ratio

    图  8  乙烯基酯树脂的水解

    Figure  8.  Hydrolysis of vinylester resin

    图  9  面内剪切载荷下CFRP的应力-应变曲线

    Figure  9.  Stress-strain curves under in-plane shear load for CFRP

    G—Shear modulus; Δτ—Shear stress; Δγ—Shear strain

    图  10  CFRP的面内剪切强度

    Figure  10.  In-plane shear strength of CFRP

    图  11  面内剪切试验中CFRP的破坏模式

    Figure  11.  Failure modes under in-plane shear test for CFRP

    Failure identification codes (such as VGN) consisting of three characters marked in (a)-(c) describe the failure mode, failure area and failure location respectively. Failure mode: H—Horizontal cracking; V—Vertical cracking; M(HV)—Multi-mode; Failure area: G—Gage; Failure location: N—Between notches

    图  12  压缩载荷下CFRP的应力-应变曲线

    Figure  12.  Stress-strain curves under compressive load for CFRP

    EC—Compressive modulus; Δσ—Stress increment; Δε—Strain increment

    图  13  CFRP试样的压缩强度

    Figure  13.  Compressive strength of CFRP specimens

    图  14  压缩试验中CFRP的破坏模式

    Figure  14.  Failure modes under compression test for CFRP specimens

    Failure identification codes (such as BGM) consisting of three characters marked in (a)-(c) describe the failure mode, failure area and failure location respectively. Failure mode: B—Brooming; D—Delamination; H—Through-thickness; M(xy)—Multi-mode (x, y=B, D, H, S); S—Long splitting; Failure area: A—At grip/tab; Failure location: T—Top; M—Middle; V—Various

    图  15  CFRP的动态力学分析: (a) 储能模量;(b) 损耗模量;(c) 损耗因子(tanδ);(d) 玻璃化转变温度(Tg)

    Figure  15.  Dynamic mechanical analysis for CFRP: (a) Storage modulus; (b) Loss modulus; (c) tanδ; (d) Glass transition temperature (Tg)

    表  1  老化环境

    Table  1.   Ageing environment

    EnvironmentImmersion into medium with a depth of 30 cm
    MediumDeionized water
    Temperature70℃
    Aging time60 days, 120 days
    下载: 导出CSV

    表  2  测试环境

    Table  2.   Testing environment

    Testing environmentsTesting temperature/℃Aging timeSpecimen conditions
    CTD−300 dayDry
    RTD20±50 dayDry
    ETD700 dayDry
    CTW−3060 days, 120 daysWet
    RTW20±560 days, 120 daysWet
    ETW7060 days, 120 daysWet
    Notes: CTD—Cryogenic temperature dry; RTD—Room temperature dry; ETD—Elevated temperature dry; CTW—Cryogenic temperature wet; RTW—Room temperature wet; ETW—Elevated temperature wet.
    下载: 导出CSV
  • [1] GAO J, HU W, WANG R, et al. Study on a multifactor coupling accelerated test method for anticorrosive coatings in marine atmospheric environments[J]. Polymer Testing,2021,100:107259. doi: 10.1016/j.polymertesting.2021.107259
    [2] 杨睿. 聚合物复合材料老化研究的现状及挑战[J]. 高分子材料科学与工程, 2015, 31(2):181-184.

    YANG Rui. Status and challenge in aging research of polymer composites[J]. Polymer Materials Science and Engi-neering,2015,31(2):181-184(in Chinese).
    [3] JOHNSON R, ARUMUGAPRABU V, KO T J. Mechanical property, wear characteristics, machining and moisture absorption studies on vinyl ester composites—A review[J]. Silicon,2019,11(5):2455-2470. doi: 10.1007/s12633-018-9828-x
    [4] YIN X, LIU Y, MIAO Y, et al. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion[J]. Polymers,2019,11(3):505. doi: 10.3390/polym11030505
    [5] AFSHAR A, ALKHADER M, KORACH C S, et al. Effect of long-term exposure to marine carbon fiber vinylester composites[J]. Composite Structures,2015,126:72-79. doi: 10.1016/j.compstruct.2015.02.008
    [6] ZHOU J, LUCAS J P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512.
    [7] SOUSA J M, GARRIDO M, CORREIA J R, et al. Hygrothermal ageing of pultruded GFRP profiles: Comparative study of unsaturated polyester and vinyl ester resin matrices[J]. Composites Part A: Applied Science and Manufacturing,2021,140:106193. doi: 10.1016/j.compositesa.2020.106193
    [8] LIU T, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering,2020,191:107958. doi: 10.1016/j.compositesb.2020.107958
    [9] JESTHI D K, NAYAK R K. Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites[J]. Compo-sites Part B: Engineering,2019,174:106980. doi: 10.1016/j.compositesb.2019.106980
    [10] DING A, WANG J, NI A, et al. Hygroscopic ageing of nonstandard size sandwich composites with vinylester-based composite faces and PVC foam core[J]. Composite Structures,2018,206(DEC.):194-201.
    [11] 张裕恒, 王继辉, 魏建辉, 等. 湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能[J]. 复合材料学报, 2023, 40(3):1406-1416. doi: 10.13801/j.cnki.fhclxb.20220509.001

    ZHANG Y H, WANG J H, WEI J H, et al. Long-term mechanical properties of carbon fiber reinforced vinyl resin composites in hygrothermal environment[J]. Acta Materiae Compositae Sinica,2023,40(3):1406-1416(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220509.001
    [12] 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6):1147-1152. doi: 10.13801/j.cnki.fhclxb.20160108.001

    GAO K, SHI H Q, SUN B G, et al. Effects of hydro-thermal aging on properties of glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1147-1152(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160108.001
    [13] 李宏福, 王淑范, 孙海霞, 等. 连续碳纤维/尼龙6热塑性复合材料的吸湿及力学性能[J]. 复合材料学报, 2019, 36(1):114-121.

    LI H F, WANG S F, SUN H X, et al. Water absorption and mechanical property of continuous carbon fiber/polyamide 6 composites[J]. Acta Materiae Compositae Sinica,2019,36(1):114-121(in Chinese).
    [14] 谭伟, 那景新, 任俊铭, 等. 高温环境下碳纤维增强树脂复合材料的层间力学性能老化行为与失效预测[J]. 复合材料学报, 2020, 37(4):859-868.

    TAN W, NA J X, REN J M, et al. Aging behavior and failure prediciton of interlaminar properties of carbon fiber reinforced polymer composite at high temperature[J]. Acta Materiae Compositae Sinica,2020,37(4):859-868(in Chinese).
    [15] 李志伟. 环氧树脂及其复合材料的低温力学性能研究[D]. 大连: 大连理工大学. 2018.

    LI Z W. The study on cyrogenic mechanical properties of epoxy resin and its composites[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [16] 于洋, 樊威, 薛利利, 等. 热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(12):4060-4072.

    YU Y, FAN W, XUE L L, et al. Influence of thermo-oxidative aging on the mechanical performance of three-dimensional braided carbon fiber-glass fiber/bismaleimide compo-sites[J]. Acta Materiae Compositae Sinica,2021,38(12):4060-4072(in Chinese).
    [17] BOSZE E J, ALAWAR A, BERTSCHGER O, et al. High-temperature strength and storage modulus in unidirectional hybrid composites[J]. Composites Science and Technology, 2006, 66(13): 1963-1969.
    [18] WU H C, YAN A. Durability simulation of FRP bridge decks subject to weathering[J]. Composites Part B: Engineering,2013,51:162-168. doi: 10.1016/j.compositesb.2013.03.018
    [19] SOUSA J M, CORREIA J R, CABRAL-FONSECA S, et al. Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications[J]. Composite Structures,2014,116:720-731. doi: 10.1016/j.compstruct.2014.06.008
    [20] 高禹, 孙成博, 高博闻, 等. 典型环境因素对聚合物基复合材料力学行为影响的研究现状与进展[J]. 高分子材料科学与工程, 2018, 34(5):177-182.

    GAO Y, SUN C B, GAO B W, et al. Status and progress of influence of typical aerospace environments on mechanical behavior of polymer matrix composites[J]. Polymer Mate-rials Science and Engineering,2018,34(5):177-182(in Chinese).
    [21] ZHONG Y, CHENG M, ZHANG X, et al. Hygrothermal durability of glass and carbon fiber reinforced composites—A comparative study[J]. Composite Structures,2019,211:134-143. doi: 10.1016/j.compstruct.2018.12.034
    [22] ASTM. Standard test method for water absorption of plastics: ASTM D5299[S]. West Conshohocken: ASTM International, 2005.
    [23] DING A, WANG J, NI A, et al. Hygroscopic ageing of nonstandard size sandwich composites with vinylester-based composite faces and PVC foam core[J]. Composite Structures,2018,206:194-201. doi: 10.1016/j.compstruct.2018.08.031
    [24] ASTM. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (Clc) test fixture: ASTM D6641[S]. West Conshohocken: ASTM International, 2014.
    [25] ASTM. Standard test method for shear properties of composite materials by V-notched rail shear method: ASTM D7078[S]. West Conshohocken: ASTM International, 2020.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  393
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-07-24
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回