留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制

王振 梅轩 曹悉奥 陈轶嵩 朱国华 郭应时

王振, 梅轩, 曹悉奥, 等. 轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制[J]. 复合材料学报, 2023, 41(0): 1-12
引用本文: 王振, 梅轩, 曹悉奥, 等. 轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制[J]. 复合材料学报, 2023, 41(0): 1-12
Zhen WANG, Xuan MEI, Xi’ao CAO, Yisong CHEN, Guohua ZHU, Yingshi GUO. Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads[J]. Acta Materiae Compositae Sinica.
Citation: Zhen WANG, Xuan MEI, Xi’ao CAO, Yisong CHEN, Guohua ZHU, Yingshi GUO. Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads[J]. Acta Materiae Compositae Sinica.

轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制

基金项目: 国家重点研发计划 (2021YFB2501705; SQ2021YFE011519);陕西省自然科学基金 (2020JQ-368; 2023-JC-QN-0430);长安大学中央高校基础研究基金 (300102222107; 300102221201)
详细信息
    通讯作者:

    朱国华,博士,副教授,研究方向为汽车轻量化 E-mail: guohuazhu@chd.edu.cn

  • 中图分类号: TB333

Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads

Funds: National Key R&D Program of China (2021YFB2501705; SQ2021YFE011519); Natural Science Foundation of Shaanxi Province (2020JQ-368; 2023-JC-QN-0430); Fundamental Research Funds for the Central Universities, CHD (300102222107; 300102221201)
  • 摘要: 复合材料-金属-泡沫混杂防护结构作为一种新型的吸能结构,结合了复合材料高强度、低密度,金属材料低成本、高韧性和多孔材料稳定变形等优点,在汽车轻量化设计中显示出广阔应用前景。由于不同组分在压溃过程中存在复杂交互作用,其变形模式和相应的吸能机制尚未被完全揭示,为其结构优化设计带了巨大挑战,进一步阻碍了其在汽车领域的推广及应用。本文在实验室条件下制备了单一碳纤维(CF)管件、单一铝管(Al)、单一泡沫铝柱体(Af)、铝-泡沫(Al-Af)及碳纤维-铝合金-泡沫铝(CF-Al-Af)混杂管件,并对其分别开展了轴向(0°)和斜向(10°)准静态压溃实验。结果表明Al-Af混杂管件在轴向和斜向工况下的能量吸收均高于单一组分之和;CF-Al-Af混杂管在斜向工况下的吸能开始超过单一组分之和,说明混杂管件能够产生“1+1>2”的吸能效果。经分析发现单一Al管在轴向和斜向工况下均发生“对称+钻石”混合型变形模式,而混杂管中的Al管在内部Af和外部CF的作用下发生了更为稳定的“对称型”的变形模式,进而促进了混杂管件整体抗压溃能力的提升。最后基于实验结果建立了CF-Al-Af混杂管件及其单一组分轴向工况下的压溃平均载荷的理论预测模型,为后续继续开展其在多工况下的耐撞性设计提供了实验数据及模型支撑。(a)轴向和(b)斜向加载下碳纤维(CF)-铝合金(Al)-泡沫铝(Af)混杂管件中铝管承载能力提升的机制

     

  • 图  1  铝合金(Al)-泡沫铝(Af)混杂管(a)和碳纤维(CF)-铝合金(Al)-泡沫铝(Af)混杂管(b)制备过程

    Figure  1.  Manufacturing process of the aluminum(Al)-aluminum foam(Af) hybrid tube (a) and CF-Al-Af hybrid tube (b)

    图  2  轴向(0°)和斜向(10°) 压缩实验

    Figure  2.  Axial(0°) and oblique(10°) compressive tests

    图  3  轴向(0°)和斜向(10°) 实验的典型压溃历程

    Figure  3.  Typical crushing histories of axial(0°) and oblique(10°) tests

    图  4  纯Al、纯Af和纯CF在轴向(0°)和斜向(10°)工况下的载荷-位移曲线

    Figure  4.  Force-displacement curves of net Al, net Af and net CF tubes under axial(0°) and oblique(10°) loads

    图  5  Al-Af混杂管和CF-Al-Af混杂管在轴向(0°)和斜向(10°)工况下的载荷-位移曲线

    Figure  5.  Force-displacement curves of Al-Af and CF-Al-Af hybrid tubes under axial(0°) and oblique(10°) loads

    图  6  单一管件和混杂管件的吸能对比

    Figure  6.  Comparisons in energy absorption of single and hybrid tubes

    图  7  铝合金材料的真实应力-应变曲线

    Figure  7.  True stress-strain curve of aluminum material

    图  8  泡沫铝材料的应力-应变曲线

    Figure  8.  Stress-strain curve of aluminum foam

    图  9  CF-Al-Af试样的有限元模型

    Figure  9.  Finite element model of CF-Al-Af samples

    图  10  纯铝管(a)、纯泡沫铝(b)、纯碳管(c)、铝管-泡沫铝(d)和碳管-铝管-泡沫铝混杂管(e)仿真与实验曲线对比

    Figure  10.  Comparisons in curves between experiments and simulations: net Al (a), net Af (b), net CF (c), Al-Af(d) and CF-Al-Af tubes (e)

    图  11  纯铝管(a)、纯泡沫铝(b)、纯碳管(c)、铝管-泡沫铝(d)和碳管-铝管-泡沫铝混杂管(e)仿真与实验的变形模式对比

    Figure  11.  Comparisons in deformation modes between experiments and simulations: net Al (a), net Af (b), net CF (c), Al-Af (d) and CF-Al-Af tubes (e)

    图  12  轴向(0°)工况下Al-Af混杂管及其不同组分的能量吸收对比

    Figure  12.  Comparisons in energy absorptions between Al-Af hybrid tube and its different counterparts under axial(0°) load

    图  13  斜向(10°)工况下Al-Af混杂管及其不同组分的能量吸收对比

    Figure  13.  Comparisons in energy absorptions between Al-Af hybrid tube and its different counterparts under oblique(10°) load

    图  14  轴向(0°)工况下CF-Al-Af混杂管及其不同组分的能量吸收对比

    Figure  14.  Comparisons in energy absorptions between CF-Al-Af hybrid tube and its different counterparts under axial(0°) load

    图  15  斜向(10°)工况下CF-Al-Af混杂管及其不同组分的能量吸收对比

    Figure  15.  Comparisons in energy absorptions between CF-Al-Af hybrid tube and its different counterparts under oblique(10°) load

    图  16  轴向(0°)和斜向(10°)工况下混杂管中的Af、Al和CF及相应的单一组分的能量吸收对比

    Figure  16.  Comparisons in energy absorptions between Af、 Al、CF in hybrid tubes and the corresponding single counterparts under axial(0°) and oblique(0°) loads

    图  17  轴向(0°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的载荷-位移曲线对比

    Figure  17.  Comparisons in force-displacement curves among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under axial(0°) load

    图  18  轴向(0°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的变形模式对比

    Figure  18.  Comparisons in deformation modes among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under axial(0°) load

    图  19  斜向(10°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的载荷-位移曲线对比

    Figure  19.  Comparisons in force-displacement curves among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under oblique(10°) load

    图  20  斜向(10°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的变形模式对比

    Figure  20.  Comparisons in deformation modes among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under oblique(10°) load

    表  1  所有实验试样的信息汇总

    Table  1.   Information summary of all testing samples

    SamplesOuter diameter/mmThickness
    /mm
    Mass
    /g
    Load
    angle
    Al-0° 60 1.0 58
    Al-10° 60 1.0 58 10°
    Af-0° 58 1.0 94
    Af-10° 58 1.0 94 10°
    CF-0° 63 1.51 44
    CF-10° 63 1.51 44 10°
    Al-Af-0° 60 2.51 102
    Al-Af-10° 60 2.51 102 10°
    CF-Al-Af-0° 63 - 195
    CF-Al-Af-10° 63 - 196 10°
    下载: 导出CSV

    表  2  碳纤维复合材料力学性能参数

    Table  2.   Mechanical property parameters of CFRP

    Material propertyValue
    Density $ \rho $/(g·cm−3) 1.53
    In-plane Young’s modulus $ {E_1} = {E_2} $/GPa 55.4
    In-plane shear modulus $ {G_1}{\text{ = }}{G_2} $/GPa 3.4
    Poisson's ratio $ \nu $ 0.056
    Tensile strength along weft direction $ {X_{\text{T}}} $/MPa 455
    Tensile strength along warp direction $ {Y_{\text{T}}} $/MPa 405
    Failure parameter of tension $ {D_{{\text{FAILT}}}} $ 0.05
    Failure parameter of compression $ {D_{{\text{FAILC}}}} $ −0.05
    Softening factor $ {S_{{\text{OFT}}}} $ 0.5
    Inter-laminar stiffness $ {G_{\text{N}}} $/MPa 40000
    Inter-laminar critical distance $ {C_{{\text{CRIT}}}} $/mm 0.005
    Inter-laminar normal strength $ {X_{{\text{NFLS}}}} $/MPa 38.2
    Inter-laminar shear strength $ {X_{{\text{SFLS}}}} $/MPa 72.2
    下载: 导出CSV

    表  3  实验与仿真的耐撞性指标对比

    Table  3.   Comparisons in crashworthiness indicators between experiments and simulations

    SamplesTests$ {E_{\text{A}}} $
    /J
    $ {P_{{\text{CF}}}} $
    /kN
    $ {C_{{\text{FE}}}} $
    /%
    Al-0° Experiment 1735.20 61.52 39
    Simulation 1785.60 58.43 42
    Al-10° Experiment 1634.40 29.86 76
    Simulation 1605.60 31.99 70
    Af-0° Experiment 1191.60 17.12 84
    Simulation 1282.32 21.35 83
    Af-10° Experiment 1200.24 18.77 83
    Simulation 1131.12 17.33 91
    CF-0° Experiment 3191.04 55.74 80
    Simulation 3175.92 55.31 80
    CF-10° Experiment 2665.44 47.91 77
    Simulation 2676.07 37.92 98
    Al-Af-0° Experiment 3502.77 46.87 84
    Simulation 3287.23 64.00 71
    Al-Af-10° Experiment 3573.77 57.04 87
    Simulation 3304.81 56.27 82
    CF-Al-Af-10° Experiment 5723.28 143.50 55
    Simulation 5405.04 134.66 56
    CF-Al-Af-10° Experiment 5803.92 116.47 69
    Simulation 5573.52 99.76 78
    下载: 导出CSV

    表  4  实验结果与有限元和理论预测结果对比

    Table  4.   Comparisons among test and theory and FEA results

    TubeMethod$ M_{_{{\rm{net Al}}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{net Af}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{net CF}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{IE}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{CF - Al - Af}}}^{{\rm{CF}}} $
    /kN
    CF-Al-Af-0° Test 24.10 16.55 44.32 −5.48 79.49
    FEA 24.80 17.81 44.11 −11.65 75.07
    |Error| 2.90% 7.61% 0.47% 112.5% 5.56%
    Theory 24.15 17.96 47.55 −2.27 87.39
    |Error| 0.21% 8.52% 7.29% 58.6% 9.9%
    下载: 导出CSV
  • [1] KIM HC, SHIN DK, LEE JJ, et al. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application[J]. Composite Structures,2014,112:1-10. doi: 10.1016/j.compstruct.2014.01.042
    [2] HUANG Z, ZHANG X, YANG C. Experimental and numerical studies on the bending collapse of multi-cell Aluminum/CFRP hybrid tubes[J]. Composites Part B:Engineering,2020,181:107527. doi: 10.1016/j.compositesb.2019.107527
    [3] 王振, 朱国华, 吴永强, 等. 铝合金/碳纤维混合前纵梁的轴向冲击吸能特性[J]. 复合材料学报, 2022, 39(10):5020-5031.

    Zhen WANG, Guohua ZHU, Yongqiang WU, et al. Axial impact energy absorption characteristics of the aluminum/ carbon fiber reinforced plastic hybrid front rail[J]. Acta Materiae Compositae Sinica,2022,39(10):5020-5031(in Chinese).
    [4] 王振, 朱国华. Al-碳纤维增强聚丙烯混合帽型梁的热模压成形特性及三点弯曲特性[J]. 复合材料学报, 2022, 39(12):1-13.

    Zhen WANG, Guohua ZHU. Hot press molding characteristics and three-point bending characteristics of Al-carbon fiber reinforced polypropylene hybrid hat-shaped rail[J]. Acta Materiae Compositae Sinica,2022,39(12):1-13(in Chinese).
    [5] 王健, 郑学丰, 付昌云, 等. 碳纤维/环氧树脂复合材料-铝合金层合板深拉成型特性[J]. 复合材料学报, 2019, 36(12):2786-2794. doi: 10.13801/j.cnki.fhclxb.20190313.001

    WANG Jian, ZHENG Xuefeng, FU Changyun, et al. Deep drawing characteristics of carbon fiber/epoxy resin composite-aluminum alloy laminates[J]. Acta Materiae Compositae Sinica,2019,36(12):2786-2794(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190313.001
    [6] BAMBACH MR. Axial capacity and crushing behavior of metal-fiber square tubes-Steel, stainless steel and aluminum with CFRP[J]. Composites Part B Engineering,2010,41(7):550-559. doi: 10.1016/j.compositesb.2010.06.002
    [7] KALHOR R, AKBARSHAHI H, CASE SW. Numerical modeling of the effects of FRP thickness and stacking sequence on energy absorption of metal-FRP square tubes[J]. Composite Structures,2016,147:231-246. doi: 10.1016/j.compstruct.2016.03.038
    [8] KALHOR R, CASE SW. The effect of FRP thickness on energy absorption of metal-FRP square tubes subjected to axial compressive loading[J]. Composite Structures,2015,130:44-50. doi: 10.1016/j.compstruct.2015.04.009
    [9] HUANG Z, ZHANG X. Crashworthiness and optimization design of quadruple-cell CFRP/aluminum hybrid tubes under transverse bending[J]. Composite Structures,2020,235:111753. doi: 10.1016/j.compstruct.2019.111753
    [10] FENG P, HU L, QIAN P, et al. Compressive bearing capacity of CFRP-aluminum alloy hybrid tubes[J]. Composite Structures,2016,140:749-757. doi: 10.1016/j.compstruct.2016.01.041
    [11] ZHU G, LIAO J, SUN G, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]. International Journal of Impact Engineering,2020:103509.
    [12] Yang H, Guo X, Wang H, et al. Low-velocity impact performance of composite-aluminum tubes prepared by mesoscopic hybridization[J]. Composite Structures,2021,274:114348. doi: 10.1016/j.compstruct.2021.114348
    [13] Ming S, Song Z, Zhou C, et al. The crashworthiness design of metal/CFRP hybrid tubes based on origami-ending approach: Experimental research[J]. Composite Structures,2022,279:114843. doi: 10.1016/j.compstruct.2021.114843
    [14] Bambach MR, Zhao XL, Jama H. Energy absorbing characteristics of aluminium beams strengthened with CFRP subjected to transverse blast load[J]. International Journal of Impact Engineering,2010,37(1):37-49. doi: 10.1016/j.ijimpeng.2009.06.007
    [15] 沈勇, 柯俊, 吴震宇. 不同编织角碳纤维增强聚合物复合材料-Al方管的吸能特性[J]. 复合材料学报, 2020, 37(3):591-600. doi: 10.13801/j.cnki.fhclxb.20190528.003

    SHEN Yong, KE Jun, WU Zhenyu. Energy-absorbing characteristics of carbon fiber reinforced polymer composite-Al square tubes with different braiding angles[J]. Acta Materiae Compositae Sinica,2020,37(3):591-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190528.003
    [16] 朱烨飞, 孙雨果. 单轴压缩载荷下闭孔泡沫铝的变形机制[J]. 复合材料学报, 2017, 34(8):1810-1816. doi: 10.13801/j.cnki.fhclxb.20161116.002

    ZHU Yefei, SUN Yuguo. Deformation mechanism of closed-cell aluminum foam under uniaxial compression[J]. Acta Materiae Compositae Sinica,2017,34(8):1810-1816(in Chinese). doi: 10.13801/j.cnki.fhclxb.20161116.002
    [17] 卢子兴, 陈伟. 泡沫变形模式对泡沫填充圆管压溃行为的影响[J]. 复合材料学报, 2011, 28(5):168-173. doi: 10.13801/j.cnki.fhclxb.2011.05.031

    LU Zixing, CHEN Wei. Effect of the foam deformation modes on the crushing behavior of foam-filled circular tube[J]. Acta Materiae Compositae Sinica,2011,28(5):168-173(in Chinese). doi: 10.13801/j.cnki.fhclxb.2011.05.031
    [18] 杨旭东, 安涛, 冯晓琳, 等. 泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性[J]. 复合材料学报, 2020, 37(8):1850-1860. doi: 10.13801/j.cnki.fhclxb.20191206.002

    Xudong YANG, Tao AN, Xiaolin FENG, Tianchun ZOU, Rongrong ZONG. Compressive deformation behavior and energy absorption of Al foam-filled carbon fiber reinforced plastic thin-walled tube[J]. Acta Materiae Compositae Sinica,2020,37(8):1850-1860(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191206.002
    [19] COSTAS M, MORIN D, LANGSETH M, et al. Axial crushing of aluminum extrusions filled with PET foam and GFRP. An experimental investigation[J]. Thin-Walled Structures,2016,99:45-57. doi: 10.1016/j.tws.2015.11.003
    [20] YANG H, GUO X, WANG H, et al. Low-velocity impact performance of composite-aluminum tubes prepared by mesoscopic hybridization[J]. Composite Structures,2021,274:114348. doi: 10.1016/j.compstruct.2021.114348
    [21] YANG S, QI C. Multiobjective optimization for empty and foam-filled square columns under oblique impact loading[J]. International Journal of Impact Engineering,2013,54:177-191. doi: 10.1016/j.ijimpeng.2012.11.009
    [22] Yang W, Xie S, Li H, Chen Z. Design and injury analysis of the seated occupant protection posture in train collision[J]. Safety science,2019,117:263-275. doi: 10.1016/j.ssci.2019.04.028
    [23] CHEN D, XIAO S, YANG B, et al. Axial crushing response of carbon/glass hybrid composite tubes: an experimental and multi-scale computational Composite Structures, 2022: 115640.
    [24] HANSSEN AG, LANGSETH M, HOPPERSTAD OS. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering,2000,24(5):475-507. doi: 10.1016/S0734-743X(99)00170-0
    [25] LU Guoxing, YU Tongxi. Energy absorption of structures and materials[M]. Elsevier, 2003.
    [26] ALEXANDER JM. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):10-15. doi: 10.1093/qjmam/13.1.10
    [27] ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engineering,1984,2(3):263-281. doi: 10.1016/0734-743X(84)90010-1
    [28] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering,1984,2(2):179-208. doi: 10.1016/0734-743X(84)90005-8
    [29] BORIA S, PETTINARI S, GIANNONI F. Theoretical analysis on the collapse mechanisms of thin-walled composite tubes[J]. Composite Structures,2013,103:43-49. doi: 10.1016/j.compstruct.2013.03.020
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-01-17
  • 录用日期:  2023-01-18
  • 网络出版日期:  2023-02-16

目录

    /

    返回文章
    返回