留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维表面改性对其增强热塑性复合材料性能影响的研究进展

王在跃 姜宁 王明道

王在跃, 姜宁, 王明道. 碳纤维表面改性对其增强热塑性复合材料性能影响的研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 王在跃, 姜宁, 王明道. 碳纤维表面改性对其增强热塑性复合材料性能影响的研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
WANG Zaiyue, JIANG Ning, WANG Mingdao. Research progress on surface modification of carbon fiber and its effect on the properties of thermoplastic composites[J]. Acta Materiae Compositae Sinica.
Citation: WANG Zaiyue, JIANG Ning, WANG Mingdao. Research progress on surface modification of carbon fiber and its effect on the properties of thermoplastic composites[J]. Acta Materiae Compositae Sinica.

碳纤维表面改性对其增强热塑性复合材料性能影响的研究进展

基金项目: 国家自然科学基金(12302182)
详细信息
    通讯作者:

    姜宁,博士,讲师,硕士生导师,研究方向为先进树脂基复合材料 E-mail: jiangning@sdut.edu.cn

  • 中图分类号: TB332

Research progress on surface modification of carbon fiber and its effect on the properties of thermoplastic composites

Funds: The National Natural Science Foundation of China (No.12302182)
  • 摘要: 碳纤维增强热塑性复合材料(CRTP)具有轻质、高强、高模等优异性能,在汽车、航空航天、国防军工和风力发电等领域具有广阔的应用前景。为了获得性能优良的复合材料,碳纤维(CF)表面改性方法被深入研究以提高CF与热塑性树脂间的界面结合。本文介绍了当前碳纤维增强复合材料界面增强理论,总结了国内外CF表面改性技术及与热塑性树脂界面结合的研究进展,并综述了各种不同表面改性技术的优缺点及对CRTP性能的影响。

     

  • 图  1  界面结合的分子动力学模拟;(a)机械互锁作用[16];(b)化学键合作用[18];(c) 碳纤维(CF)表面形貌与浸润性的关系[20]

    Figure  1.  Molecular dynamics simulations of interfacial binding; (a) mechanical interlocking interactions [14]; (b) chemical bonding and interactions [18];(c) relationship between carbon fiber (CF) surface morphology and wettability [20]

    图  2  CF/PEEK复合材料界面增强机制示意图[36]

    Figure  2.  Schematic diagram of reinforcement mechanism of CF/PEEK composites [36]

    图  3  不同SPEEK浓度处理的CF/PEEK复合材料的(a)弯曲性能和(b)层间剪切强度[36]

    Figure  3.  (a)Flexural properties and (b) interlaminar shear strength of CF/PEEK composites treated with different SPEEK concentrations [36]

    图  4  SCF上浆处理过程示意图[42]

    Figure  4.  Schematic diagram of SCF sizing process [42]

    图  5  CF施胶及复合材料制备流程示意图[44]

    Figure  5.  Schematic diagram of coating for CF and composite preparation process [44]

    图  6  CF接枝PEEK-NH2流程示意图[50]

    Figure  6.  Schematic diagram of graft PEEK-NH2 process for CF [50]

    图  7  CF(a)与接枝改性CF(b)的微观形貌[52]

    Figure  7.  Micromorphologies of CF (a) and graft-modified CF (b) [52]

    图  8  CF接枝过程示意图[2]

    Figure  8.  Schematic diagram of graft process for CF [2]

    图  9  不同CF/PA复合材料的(a)拉伸性能、(b)冲击强度和(c)储能模量[56]

    Figure  9.  (a) Tensile properties, (b) impact strength and (c) storage modulus of different CF/PA composites [56]

    图  10  (a) CNT@PP-CF多层结构制备过程;(b) 多层结构的界面增强机制[59]

    Figure  10.  (a) Preparation process of CNT@PP-CF multilayer structure; (b) interfacial enhancement mechanism of multilayer structure [59]

    图  11  碳纤维复合改性及CF/PA6复合材料制备流程示意图[60]

    Figure  11.  Schematic diagram of the preparation process of compound modified CF and CF/PA6 composite [60]

    图  12  CF/PA复合材料的(a)拉伸性能和(b)弯曲性能[60]

    Figure  12.  (a) Tensile properties and (b) flexural properties of CF/PA composites [60]

    图  13  复合改性CF及复合材料制备流程示意图[61]

    Figure  13.  Schematic diagram of the preparation process of compound modified CF and its composite [61]

    表  1  不同碳纤维表面处理的热塑性复合材料的性能比较

    Table  1.   Comparing the properties of thermoplastic composites subjected to various carbon fiber surface treatments.

    Methods Sample Processing
    technology
    Mechanical properties Ref.
    ILSS/
    MPa
    IFSS/
    MPa
    Flexural properties Tensile properties
    Flexural strength /MPa Flexural modulus /GPa Tensile strength /MPa Tensile modulus /GPa
    Oxidation Gas-phase oxidation CF/PI Compressing molding 202 (↑4.7%) [25]
    CF/PEEK Compressing molding [26]
    Liquid phase CF/ABS Injection molding [27]
    Anodic oxidation CF/HDPE Compressing molding 192 (↑28%) [28]
    Sizing/coating modification CF/PEEK Compressing molding 59.4 (↑54.3%) [34]
    CF/PEEK Compressing molding 93.5 (↑53.3%) 1020.0 (↑52.9%) 78.8 (↑54.8%) [35]
    CF/PEEK Compressing molding 92
    (↑26%)
    1237 (↑35.5%) 78 (↑5.4%) [36]
    CF/PEEK Compressing molding 46.08 (↑37.02%) 167 (↑27.62%) [37]
    CF/PEEK Compressing molding 82.8 (↑70%) 519.2 (↑37%) 26.9 (↑48%) [38]
    CF/PA6 Compressing molding 31.7 (↑72.3%) 308.2 (↑56.9%) 22.5 (↑42.4%) [41]
    Nanoparticles CF/PEI Injection molding (↑39.4%) (↑12.5%) [42]
    CF/PA6 Compressing molding 31.13 (↑40%) [43]
    CF/PEEK Compressing molding 76.83 (↑68.93%) 703.43 (↑77.71%) 45.06 (↑59.39%) [44]
    Plasma treatment CF/PA12 Compressing molding 82.7 (↑105.72%) [46]
    CF/PEEK 59.73 (↑41.01%) [14]
    CF/PEI Compressing molding 239 (↑42%) 24.98
    (↑8.7%)
    [47]
    Chemical grafting modification CF/PEEK Compressing molding (↑33.4%) [50]
    CF/PEEK Compressing molding 97.43 (↑66.77%) 103.12 (↑137.5%) [51]
    CF/PPBES Compressing molding 97.2 (↑23.2%) 2043 (↑34.4%) [52]
    Nanoparticles modification CF/PEEK Compressing molding 91.49 (↑25.21%) [54]
    CF/PA6 Compressing molding 46.7 (↑34%) [55]
    CF/PC Compressing molding 344.8 (↑46.5%) 37.8 (↑57.5%) [56]
    CF/PES Injection molding 415.0 (↑28.76%) 11.5 (↑38.55%) 223.3 (↑17.77%) 12.9 (↑41.76%) [57]
    CF/PC 37.03 (↑67.25%) [58]
    CF/PA66 Injection molding 42.6 (↑52.3%) 216.58 (↑19.2%) [59]
    Compound modified CF/PA6 Compressing molding 573 (↑17.4%) 38.0 (↑16.6%) 480 (↑21.2%) 47.9 (↑24.1%) [60]
    CF/PPS Compressing molding 82.39 (↑21.73%) 987.74 (↑36.18%) 677.86 (↑5.96%) [61]
    Notes: “↑”, this is the symbol for enhancement; “-”, this symbol indicates that it has not been reported in the literature, CF/PI-Carbon fiber/polyimide, CF/PEEK-Carbon fiber/polyetheretherketone, CF/ABS-Carbon fiber/acrylonitrile butadiene styrene, CF/HDPE-Carbon fiber/high density polyethylene, CF/PA6-Carbon fiber/polyamide 6, CF/PEI-Carbon fiber/polyetherimide, CF/PA12-Carbon fiber/polyamide 12, CF/PPBES-Carbon fiber/copoly(phthalazinone ether sulfone)s, CF/PC-Carbon fiber/polycarbonate, CF/PES-Carbon fiber/polyethersulfone, CF/PA66-Carbon fiber/polyamide 66, CF/PPS-Carbon fiber/polyphenylene sulfide
    下载: 导出CSV
  • [1] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3): 1229-1247.

    CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Advances in the preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1229-1247(in Chinese).
    [2] 刘高尚, 刘雅玄, 卞达, 等. 氧化石墨烯接枝碳纤维及其树脂涂层在不同载荷下的摩擦学性能[J]. 表面技术, 2021, 50(4): 62-69.

    LIU Gaoshang, LIU Yaxuan, BIAN Da, et al. Tribological properties of graphene oxide grafted carbon fiber and their resin coatings under different loads[J]. Surface Technology, 2021, 50(4): 62-69(in Chinese).
    [3] 李美琪, 李晓飞, 王瑞涛, 等. 碳纤维增强聚合物基复合材料界面特性研究进展[J]. 材料导报, 2023, (20): 1-31. doi: 10.11896/cldb.22030247

    LI Meiqi, LI Xiaofei, WANG Ruitao, et al. Advances in interfacial properties of carbon fiber reinforced polymer matrix composites[J]. Materials Reports, 2023, (20): 1-31. doi: 10.11896/cldb.22030247
    [4] 谢顺利, 雷红红, 张春丽, 等. 表面改性对碳纤维及其复合材料性能影响的研究进展[J]. 表面技术, 2022, 51(11): 186-195.

    XIE Shunli, LEI Honghong, ZHANG Chunli, et al. Research progress on the effect of surface modification on the properties of carbon fiber and their composites[J]. Surface Technology, 2022, 51(11): 186-195(in Chinese).
    [5] ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering, 2022, 233: 109639. doi: 10.1016/j.compositesb.2022.109639
    [6] YAO S, JIN F, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering, 2018, 142: 241-250. doi: 10.1016/j.compositesb.2017.12.007
    [7] ALMUSHAIKEH A M, ALASWAD S O, ALSUHYBANI M S, et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review[J]. Polymer Testing, 2023, 122: 108029. doi: 10.1016/j.polymertesting.2023.108029
    [8] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285.

    ZHAO Yan, SUN Mingchen, ZHANG Siyi, at al. Research progress of continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285(in Chinese).
    [9] 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37(8): 1785-1795.

    ZHOU Ruidian, GAO Liang, HUO Hongyu, at al. Research progress on carbon fiber sizing agents for thermoplastic resin matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1785-1795(in Chinese).
    [10] LIU B, ZHU P, XU A, et al. Investigation of the recycling of continuous fiber-reinforced thermoplastics[J]. Journal of Thermoplastic Composite Materials, 2019, 32(3): 342-356. doi: 10.1177/0892705718759388
    [11] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61. doi: 10.11868/j.issn.1001-4381.2019.000209

    ZHAO Yan, LIU Hansong. Preparation and application of continuous fiber reinforced high performance thermoplastic resin matrix composites[J]. Journal of Materials Engineering, 2020, 48(8): 49-61(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000209
    [12] WU Y, WANG Z, XU L, et al. Preparation of silver-plated carbon nanotubes/carbon fiber hybrid fibers by combining freeze-drying deposition with a sizing process to enhance the mechanical properties of carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106421. doi: 10.1016/j.compositesa.2021.106421
    [13] HE M, XU P, ZHANG Y, et al. Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial propertyes and electromagnetic interference shielding performance[J]. Chemical Engineering Journal, 2020, 388: 124255. doi: 10.1016/j.cej.2020.124255
    [14] LU C, QIU S, LU X, et al. Enhancing the interfacial strength of carbon fiber/Poly(ether ether ketone) hybrid composites by plasma treatments[J]. Polymers (Basel), 2019, 11(5).
    [15] LYU H, JIANG N, LI Y, et al. Enhanced interfacial and mechanical properties of carbon fiber/PEEK composites by hydroxylated PEEK and carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106364. doi: 10.1016/j.compositesa.2021.106364
    [16] JOHNSTON J P, KOO B, SUBRAMANIAN N, et al. Modeling the molecular structure of the carbon fiber/polymer interphase for multiscale analysis of composites[J]. Composites Part B: Engineering, 2017, 111: 27-36. doi: 10.1016/j.compositesb.2016.12.008
    [17] MA L, MENG L, WU G, et al. Effects of bonding types of carbon fibers with branched polyethyleneimine on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Composites Science and Technology, 2015, 117: 289-97. doi: 10.1016/j.compscitech.2015.06.018
    [18] DEMIR B, HENDERSON L C, WALSH T R. Design rules for enhanced interfacial shear response in functionalized carbon fiber epoxy composites[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11846-11857.
    [19] GOGOI R, SETHI S K, MANIK G. Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: A molecular dynamics study[J]. Applied Surface Science, 2021, 539: 148162. doi: 10.1016/j.apsusc.2020.148162
    [20] XU P, YU Y, GUO Z, et al. Evaluation of composite interfacial properties based on carbon fiber surface chemistry and topography: Nanometer-scale wetting analysis using molecular dynamics simulation[J]. Composites Science and Technology, 2019, 171: 252-60. doi: 10.1016/j.compscitech.2018.12.028
    [21] FENG P, SONG G, LI X, et al. Effects of different “rigid-flexible” structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Colloid and Interface Science, 2021, 583: 13-23. doi: 10.1016/j.jcis.2020.09.005
    [22] ZHOU Y, FAN M, CHEN L. Interface and bonding mechanisms of plant fibre composites: An overview[J]. Composites Part B: Engineering, 2016, 101: 31-45. doi: 10.1016/j.compositesb.2016.06.055
    [23] WU Q, ZHAO R, ZHU J, et al. Interfacial improvement of carbon fiber reinforced epoxy composites by tuning the content of curing agent in sizing agent[J]. Applied Surface Science, 2020, 504: 144384. doi: 10.1016/j.apsusc.2019.144384
    [24] LI M, GU Y Z, LIU H, et al. Investigation the interphase formation process of carbon fiber/epoxy composites using a multiscale simulation method[J]. Composites Science and Technology, 2013, 86: 117-21. doi: 10.1016/j.compscitech.2013.07.008
    [25] ZHANG X, PEI X, MU B, et al. Effect of carbon fiber surface treatments on the flexural strength and tribological properties of short carbon fiber/polyimide composites[J]. Surface and Interface Analysis, 2008, 40(5): 961-965. doi: 10.1002/sia.2846
    [26] ZHAO X, XIONG D, WU X. Effects of surface oxidation treatment of carbon fibers on biotribological properties of CF/PEEK materials[J]. Journal of bionics engineering, 2017, 14(4): 640-647. doi: 10.1016/S1672-6529(16)60430-4
    [27] LI J, CAI C L. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites[J]. Current Applied Physics, 2011, 11(1): 50-54. doi: 10.1016/j.cap.2010.06.017
    [28] ZHANG S B, DAI Q L. The surface modification of carbon fiber for thermoplastic HDPE composites[J]. Surface and Interface Analysis, 2019, 51(2): 184-189. doi: 10.1002/sia.6563
    [29] BAUER M, BERATZ S, RUHLAND K, et al. Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: Quantification of surface functional groups by gas-phase derivatization[J]. Applied Surface Science, 2020, 506: 144947. doi: 10.1016/j.apsusc.2019.144947
    [30] RAHUL R, ANUPAM S. A carbon fiber paper based electrode of high activity for electro-oxidation of aqueous sulfur dioxide[J]. Materials Chemistry and Physics, 2023, 307: 128185. doi: 10.1016/j.matchemphys.2023.128185
    [31] 乔伟静, 田艳红, 张学军. 高强高模碳纤维表面电化学氮化机制[J]. 复合材料学报, 2023, 40(3): 1446-1454.

    QIAO Weijing, TIAN Yanhong, ZHANG Xuejun, et al. Mechanism of electrochemical nitriding on the surface of high strength and high modulus carbon fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1446-1454.
    [32] 张莎, 田艳红, 张学军, 等. 电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J]. 复合材料学报, 2012, 29(3): 1-8.

    ZHANG Sha, TIAN Yanhong, ZHANG Xuejun, et al. Effects of electrochemical oxidation on the surface structure and mechanical properties of high-strength and high-modulus carbon fiber[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 1-8.
    [33] WANG T, JIAO Y, MI Z, et al. PEEK composites with polyimide sizing SCF as reinforcement: Preparation, characterization, and mechanical properties[J]. High Performance Polymers, 2020, 32(4): 383-393. doi: 10.1177/0954008319867383
    [34] 王清清, 王飘飘, 钱鑫, 等. 水溶性热塑性聚酰亚胺上浆剂对国产高强高模碳纤维复合材料界面性能的影响[J]. 材料工程, 2023, 51(5): 174-182.

    WANG Qingqing, WANG Piaopiao, QIAN Xin, et al. Effect of water-soluble thermoplastic polyimide sizing agent on the interfacial properties of domestically produced high-strength and high-modulus carbon fiber composites[J]. Journal of Materials Engineering, 2023, 51(5): 174-182.
    [35] HU J, YAN F, LIU H, et al. Water-based PEKC-COOH sizing agent for enhancing the interfacial adhesion of carbon fiber/polyether-ether-ketone composites[J]. Composites Part B: Engineering, 2021, 225: 109279. doi: 10.1016/j.compositesb.2021.109279
    [36] 杨雪勤, 任宏亮, 骆佳美, 等. 水性SPEKK上浆剂改善CF/PEKK复合材料的力学性能[J]. 复合材料学报, 2023: 1-12.

    YANG Xueqin, REN Hongliang, LUO Jiamei, et al. Improvement of mechanical properties of CF/PEKK composites by aqueous SPEKK sizing agents[J]. Acta Materiae Compositae Sinica, 2023: 1-12.
    [37] PAN L, YAPICI U. A comparative study on mechanical properties of carbon fiber/PEEK composites[J]. Advanced composite materials, 2016, 25(4): 359-374. doi: 10.1080/09243046.2014.996961
    [38] HASSAN E A M, GE D, YANG L, et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 155-160. doi: 10.1016/j.compositesa.2018.05.029
    [39] AHMED S A, TIRKES S, TAYFUN U. Reinforcing effect of polyurethane sizing on properties of acrylonitrile–butadiene–styrene composites involving short carbon fiber[J]. SN Applied Sciences, 2020, 2(12).
    [40] KIM S Y, GANG H E, PARK G T, et al. Synergistic effect of polyurethane-coated carbon fiber and electron beam irradiation on the thermal/mechanical properties and long-term durability of polyamide-based thermoplastic composites[J]. Polymer Composites, 2022, 43(3): 1685-1697. doi: 10.1002/pc.26488
    [41] 王刚, 杜雷雷, 缪自强, 等. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.

    WANG Gang, DU Leilei, MIAO Ziqiang, et al. Interfacial properties of polydopamine modified carbon fiber reinforced nylon 6 composites[J]. Chinese Journal of Materials Research, 2023, 37(3): 203-210.
    [42] SUN Z, GUO F L, LI Y Q, et al. Effects of carbon nanotube-polydopamine hybridization on the mechanical properties of short carbon fiber/polyetherimide composites[J]. Composites Part B: Engineering, 2022, 236: 109848. doi: 10.1016/j.compositesb.2022.109848
    [43] ZHANG T, SONG Y, ZHAO Y, et al. Effect of hybrid sizing with nano-SiO2 on the interfacial adhesion of carbon fibers/nylon6 composites[J]. Colloids and surfaces. A, Physicochemical and engineering aspects, 2018, 553: 125-133.
    [44] LI Y, JIANG N, XU N, et al. A facile strategy to prepare boron nitride grafted carbon nanotubes coating for CF/ PEEK composites interfacial enhancement[J]. Composites Communications, 2023, 44: 101770. doi: 10.1016/j.coco.2023.101770
    [45] 何卫锋, 李榕凯, 罗思海. 复合材料用碳纤维等离子体表面改性技术进展[J]. 表面技术, 2020, 49(7): 76-89.

    HE Weifeng, LI Rongkai, LUO Sihai. Advances in plasma surface modification technology of carbon fiber for composites[J]. Surface Technology, 2020, 49(7): 76-89.
    [46] ERDEN S, HO K K C, LAMORINIERE S, et al. Continuous atmospheric plasma oxidation of carbon fibres: Influence on the fibre surface and bulk properties and adhesion to polyamide 12[J]. Plasma Chemistry and Plasma Processing, 2010, 30(4): 471-487. doi: 10.1007/s11090-010-9227-6
    [47] LEE E, LEE C, CHUN Y, et al. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites[J]. Composites Part B: Engineering, 2017, 116: 451-458. doi: 10.1016/j.compositesb.2016.10.088
    [48] CHO B, HWANG S, PARK M, et al. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites[J]. Composites Part B: Engineering, 2019, 160: 436-445. doi: 10.1016/j.compositesb.2018.12.062
    [49] 张成, 刘兆政, 孙明娟, 等. 低温等离子体碳纤维表面处理技术研究[J]. 材料导报, 2018, 32(z1): 294-296.

    ZHANG Cheng, LIU Zhaozheng, SUN Mingjuan, et al. Research on low temperature plasma carbon fiber surface treatment technology[J]. Materials Reports, 2018, 32(z1): 294-296.
    [50] HASSAN E A M, ELAGIB T H H, MEMON H, et al. Surface Modification of Carbon Fibers by Grafting PEEK-NH2 for Improving Interfacial Adhesion with Polyetheretherketone[J]. Materials, 2019, 12(5): 778. doi: 10.3390/ma12050778
    [51] WANG S, YANG Y, MU Y, et al. Synergy of electrochemical grafting and crosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J]. Composites Science and Technology, 2021, 203: 108562. doi: 10.1016/j.compscitech.2020.108562
    [52] LI N, CHENG S, WANG B, et al. Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: A step closer to industrial production[J]. Composites Science and Technology, 2023, 231: 109822. doi: 10.1016/j.compscitech.2022.109822
    [53] 李志强, 王发阳, 王士华, 等. 改性纳米SiO2对碳纤维表面和界面性能的影响[J]. 高科技纤维与应用, 2020, 45(4): 41-48. doi: 10.3969/j.issn.1007-9815.2020.04.007

    LI Zhiqiang, WANG Fayang, WANG Shihua, et al. Effect of modified nano-SiO2 on surface and interfacial properties of carbon fiber[J]. Hi-tech Fiber and Application, 2020, 45(4): 41-48. doi: 10.3969/j.issn.1007-9815.2020.04.007
    [54] ZHANG C, DUAN Y, XIAO H, et al. Preparation of MWCNTs/CF/PEEK multi-scale composites with good mechanical and electrical conductivity by a two-step process of AFP and out-of-autoclave tempering[J]. Composites Part C: Open Access, 2022, 9: 100321. doi: 10.1016/j.jcomc.2022.100321
    [55] CHEON J, KIM M. Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber[J]. Composites Part B: Engineering, 2021, 217: 108872. doi: 10.1016/j.compositesb.2021.108872
    [56] WU Y, DHAMODHARAN D, WANG Z, et al. Effect of electrophoretic deposition followed by solution pre-impregnated surface modified carbon fiber-carbon nanotubes on the mechanical properties of carbon fiber reinforced polycarbonate composites[J]. Composites Part B: Engineering, 2020, 195: 108093. doi: 10.1016/j.compositesb.2020.108093
    [57] LI F, HUA Y, QU C, et al. Greatly enhanced cryogenic mechanical properties of short carbon fiber/polyethersulfone composites by graphene oxide coating[J]. Composites Part A: Applied Science and Manufacturing, 2016, 89: 47-55. doi: 10.1016/j.compositesa.2016.02.016
    [58] YAO T T, ZHANG X F, ZHANG W S, et al. Controlled attachment of polycarbonate nanoparticles on carbon fibers for increased resin impregnation and interfacial adhesion in carbon fiber composites[J]. Composites Part B: Engineering, 2021, 224: 109218. doi: 10.1016/j.compositesb.2021.109218
    [59] CHEN J, YUAN B, YANG D, et al. The hierarchical layer with dynamic imine bonds on carbon fiber surface to simultaneously improve interface and electromagnetic shielding properties of carbon fiber reinforced thermoplastic composites[J]. Composites Science and Technology, 2023, 240: 110081. doi: 10.1016/j.compscitech.2023.110081
    [60] ZHAO H, GAO Z, ZHAI D, et al. Enhanced mechanical property of continuous carbon fiber/polyamide thermoplastic composites by combinational treatments of carbon fiber fabric[J]. Composites Communications, 2023, 38: 101508. doi: 10.1016/j.coco.2023.101508
    [61] HU J, LI F, WANG B, et al. A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: The liquid-phase oxidation followed by grafting of silane coupling agent[J]. Composites Part B: Engineering, 2020, 191: 107966. doi: 10.1016/j.compositesb.2020.107966
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-04-23
  • 录用日期:  2024-05-10
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回