留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管/有机硅树脂吸波气凝胶及其复合材料的制备与性能

王晓岚 柳云钊 孔磊 师建军 杨云华

王晓岚, 柳云钊, 孔磊, 等. 碳纳米管/有机硅树脂吸波气凝胶及其复合材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 王晓岚, 柳云钊, 孔磊, 等. 碳纳米管/有机硅树脂吸波气凝胶及其复合材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
WANG Xiaolan, LIU Yunzhao, KONG Lei, et al. Preparation and properties of carbon nanotubes/ silicon microwave absorbing aerogel and its composite[J]. Acta Materiae Compositae Sinica.
Citation: WANG Xiaolan, LIU Yunzhao, KONG Lei, et al. Preparation and properties of carbon nanotubes/ silicon microwave absorbing aerogel and its composite[J]. Acta Materiae Compositae Sinica.

碳纳米管/有机硅树脂吸波气凝胶及其复合材料的制备与性能

详细信息
    通讯作者:

    孔磊,博士,研究员,硕士生导师,研究方向为树脂基功能复合材料 E-mail: polymz@163.com

  • 中图分类号: TB332, TB34

Preparation and properties of carbon nanotubes/ silicon microwave absorbing aerogel and its composite

  • 摘要: 基于溶胶-凝胶方法,制备不同比例多壁碳纳米管改性有机硅树脂(CNT/OSR)气凝胶和针刺石英纤维增强CNT/有机硅树脂气凝胶(QF/SC)复合材料,探究CNT含量对有机硅气凝胶及其复合材料的微观结构、防热性能和吸波性能的影响规律。研究结果表明:进行物理修饰后的CNT与有机硅树脂表现出良好的相容性,构建起了微导电、导热通道;改性后树脂的热稳定性有了明显提升,当CNT的质量分数为有机硅树脂的15wt%时,Td10提升111.1℃;QF/SC复合材料热导率在0.054~0.075 W/(m·K)之间,经600 s表面温度达1000℃的烧蚀后,最大背温为145.1℃;引入碳纳米管的QF/SC复合材料介电性能显著提高,实测8~18 GHz内反射率峰值和有效带宽分别达到−29 dB和3 GHz。该项工作有望在航空航天科学和工业领域实现新的应用。

     

  • 图  1  碳纳米管改性有机硅树脂(CNT/OSR)气凝胶及针刺石英纤维增强碳纳米管/有机硅树脂气凝胶(QF/SC)复合材料的制备流程示意图

    Figure  1.  Schematic diagram of preparation process of fabrication of carbon nanotubes/organic silicon resin (CNT/OSR) aerogel and quartz fibre-reinforced CNT/silicon (QF/SC) composite

    图  2  (a)室温静置一周后未进行改性和改性后的碳纳米管分散液;(b) QF/SC复合材料示意图

    Figure  2.  (a) unmodified and modified CNT dispersion after stand at room temperature for a week, (b) picture of QF/SC composites

    图  3  有机硅树脂固化前后的FTIR图谱

    Figure  3.  FTIR spectra of silicone resin

    图  4  (a) CNT, (b) S-0, (c) SC-2, (d) SC-5, (e) SC-10, (f) SC-15样品的微观形貌图像

    Figure  4.  Micro morphological images of (a) CNT, (b) S-0, (c) SC-2, (d) SC-5, (e) SC-10, (f) SC-15 samples

    图  5  不同CNT/OSR气凝胶的孔径分布图

    Figure  5.  Pore diameter and its distribution curves of CNT/OSR aerogels

    图  6  不同CNT/OSR气凝胶的TGA和DTG曲线

    Figure  6.  TGA and DTG curves of CNT/OSR aerogels

    图  7  不同QF/SC复合材料的介电常数的(a)实部、(b)虚部和(c)介电损耗正切

    Figure  7.  (a) Real part and (b) imaginary part of the complex permittivity and (c) dielectric loss tangents for QF/SC composites

    图  8  (a) QF/SC-2、(b) QF/SC-5、(c) QF/SC-10、(d) QF/SC-15复合材料反射损耗2 D、3 D示意图

    Figure  8.  Reflection loss 2 D and 3 D diagram of (a) QF/SC-2、(b) QF/SC-5、(c) QF/SC-10、(d) QF/SC-15 composites

    图  9  不同QF/SC复合材料在8 mm厚度8~18 GHz波段内的反射损耗曲线

    Figure  9.  Reflection loss plot of QF/SC composites at 8 mm thickness in 8~18 GHz

    图  10  碳纳米管改性有机硅气凝胶及复合材料吸波机制示意图

    Figure  10.  Schematic diagram of MA mechanism of carbon nanotube modified silicone aerogel

    图  11  QF/SC-5复合材料烧蚀考核表温和背温曲线

    Figure  11.  Surface and back temperature curves of QF/SC-5 composites during ablation test

    图  12  高温烧蚀后QF/SC-5复合材料层分布示意图与微观形貌照片

    Figure  12.  Distribution diagram and microstructure pictures of QF/SC-5 composites after high temperature ablation

    表  1  不同CNT含量的CNT/OSR气凝胶的性能参数

    Table  1.   Properties of CNT/OSR aerogels prepared at different content of CNT

    Samples Density/
    (g·cm−3)
    Average pore
    diameter/nm
    Specific pore
    area/(m2·g−1)
    Td10 a/℃ Tmax b/℃ Residues/(900℃,%)
    S-0 0.3985 56.02 112.19 486.02 494.07 71.59
    SC-2 0.3833 63.50 106.78 525.80 522.86 73.58
    SC-5 0.3659 137.39 58.33 545.92 540.13 77.83
    SC-10 0.3427 239.70 34.28 558.21 560.28 81.23
    SC-15 0.3212 368.20 23.14 597.14 573.24 83.52
    Notes:Td10 is the temperature corresponds to 10% weight loss of the materials; Tmax is the temperature corresponds to the maximum pyrolysis rate of the materials.
    下载: 导出CSV

    表  2  不同QF/SC复合材料的基本性能数据

    Table  2.   Density and thermal conductivity of QF/SC composites

    Samples Density/
    (g·cm−3)
    Thermal conductivity/
    (W/(m·K)−1)
    QF/S-0 0.42663 0.054
    QF/SC-2 0.42114 0.064
    QF/SC-5 0.41384 0.069
    QF/SC-10 0.39702 0.075
    QF/SC-15 0.37182 0.064
    下载: 导出CSV
  • [1] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24. doi: 10.11868/j.issn.1001-4381.2020.000206

    FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering, 2020, 48(8): 14-24(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000206
    [2] 梁彩云, 王志江. 耐高温吸波材料的研究进展[J]. 航空材料学报, 2018, 38(3): 1-9. doi: 10.11868/j.issn.1005-5053.2018.001010

    LIANG Caiyun, WANG Zhijiang. Research Progress of High Temperature Microwave Absorption Materials[J]. Journal of Aeronautical Materials, 2018, 38(3): 1-9(in Chinese). doi: 10.11868/j.issn.1005-5053.2018.001010
    [3] 黄文润. 硅烷偶联剂及硅树脂[M]. 四川科学技术出版社, 2010.

    HUANG Wenrun. Silane Coupling Agent and Silicone Resin [M]. Sichuan: Publishing House of Science & Technology, 2010(in Chinese).
    [4] 宋若康, 张梦珊, 戴珍, 等. 烧蚀型防热_吸波多功能一体化复合材料的制备及性能[J]. 2023.

    SONG Ruokang, ZHANG Mengshan, DAI Zhen, et al. Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing[J]. Acta Materiae Compositae Sinica, 2023(in Chinese).
    [5] 陈轲, 刘鸣飞, 赵彪, 等. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154.

    CHEN Ke, LIU Mingfei, ZHAO Biao, et al. Research progress in flame retardancy and ablation resistance of silicone-modified polymeric materials[J]. China Plastics, 2022, 36(6): 149-154(in Chinese).
    [6] 代广富, 裴勇兵, 褚俊涵, 等. 有机硅树脂耐高温改性方法及机制研究进展[J]. 高分子材料科学与工程, 2022, 38(3): 174-182.

    DAI Guanfu, PEI Yongbing, ZHU Junhan, et al. Progress in Modification Methods and Mechanisms of Silicone Resins for High Temperature Resistance[J]. Polymer Materials Science and Engineering, 2022, 38(3): 174-182(in Chinese).
    [7] HUADONG ZHANG, ZHONGYI YAN, ZHIZHOU YANG, et al. Study on the synthesis and thermal stability of silicone resins reinforced by si–o–ph cross-linking[J]. RSC Advances, 2021, 11(49): 30971-30979. doi: 10.1039/D1RA05524K
    [8] LIN TONG, YAKAI FENG, XUJUN SUN, et al. High refractive index adamantane-based silicone resins for the encapsulation of light-emitting diodes[J]. Polymers for Advanced Technologies, 2018, 29(8): 2245-2252. doi: 10.1002/pat.4335
    [9] ZHIFENG HAO, JIN ZHANG, YAHONG WU, et al. Synthesis and thermal stability properties of boron-doped silicone resin[J]. Journal of Applied Polymer Science, 2014, 131(20): app. 40934.
    [10] 马嘉浩, 邓祚主, 展喜兵, 等. 高折射率钛杂化硅树脂制备及性能研究[J]. 中国胶粘剂, 2019, 28(2): 6-11+25.

    MA Jiahao, DENG Zuozhu, ZHAN Xibing, et al. Preparation and properties of titanium hybrid silicone resin with high refractive index[J]. China Adhesives, 2019, 28(2): 6-11+25(in Chinese).
    [11] 陆静娟, 杨辉, 郭兴忠, 等. 硅铝溶胶改性甲基硅树脂耐划伤薄膜[J]. 陶瓷学报, 2006, (1): 63-67. doi: 10.3969/j.issn.1000-2278.2006.01.014

    LU Jingjuan, YANG Hui, GUO Xingzhong, et al. The Abrasion-resistant Film of Methylsilicone Modified by Boehmite and Silica Sol[J]. Journal of Ceramics, 2006, (1): 63-67(in Chinese). doi: 10.3969/j.issn.1000-2278.2006.01.014
    [12] QIAN WU, JING JIANG, FEI XIE, et al. Novel hybrid silicone resin composites with excellent low dielectric and high temperature mechanical properties[J]. Composites Communications, 2022, 35: 101288. doi: 10.1016/j.coco.2022.101288
    [13] MENGQIU JIA, CHAOBO WU, WEI LI, et al. Synthesis and characterization of a silicone resin with silphenylene units in si-o-si backbones[J]. Journal of Applied Polymer Science, 2009, 114(2): 971-977. doi: 10.1002/app.30635
    [14] PEI HUANG, HAN-QIAO SHI, HONG-MEI XIAO, et al. High performance surface-modified tio2/silicone nanocomposite[J]. Scientific Reports, 2017, 7(1): 5951. doi: 10.1038/s41598-017-05166-7
    [15] YAOYUAN XU, JUN LONG, RUNZE ZHANG, et al. Greatly improving thermal stability of silicone resins by modification with poss[J]. Polymer Degradation and Stability, 2020, 174: 109082. doi: 10.1016/j.polymdegradstab.2020.109082
    [16] CONSTANCE ROBEYNS, LOÏC PICARD, FRANÇOIS GANACHAUD. Synthesis, characterization and modification of silicone resins: an “augmented review”[J]. Progress in Organic Coatings, 2018, 125: 287-315. doi: 10.1016/j.porgcoat.2018.03.025
    [17] ZHAOQUN PAN, KELIN ZENG, BINGSHENG HUANG, et al. A new dealcoholization method in the synthesis of vinyl methyl phenyl silicone resins for led encapsulation[J]. Silicon, 2020, 12(12): 3005-3013. doi: 10.1007/s12633-020-00396-3
    [18] ZHIDONG HAN, ALBERTO FINA. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science, 2011, 36(7): 914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [19] JUNWEI YUE, YIYU FENG, MENGMENG QIN, et al. Carbon-based materials with combined functions of thermal management and electromagnetic protection: preparation, mechanisms, properties, and applications[J/OL]. Nano Research, 2023[2024–01–07].
    [20] 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12.

    WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12(in Chinese).
    [21] 董晓娜, 廖孝光, 游胜勇, 等. 多壁碳纳米管/硅树脂复合材料的导热性能研究[J]. 热固性树脂, 2017, 32(2): 8-11.

    DONG Xiaona, LIAO Xiaoguang, YOU Shengyong, et al. Study on the thermal conductivity of multiwall carbon nanotubes / silicone resin composites[J]. Thermosetting Resin, 2017, 32(2): 8-11(in Chinese).
    [22] 吴昊, 蔡炜, 王利民, 等. 超声分散法制备碳纳米管/有机硅树脂复合材料及其性能研究[J]. 化工新型材料, 2015, 43(5): 35-37.

    WU Hao, CAI Wei, WANG Limin, et al. Study on preparation and property of carbon nanotube/silicon resin composite by ultrasonic dispersion method[J]. New Chemical Materials, 2015, 43(5): 35-37(in Chinese).
    [23] ASGAR HUSEYNOV, AYDIN ISRAFILOV, SAMIRA MAMMADOVA, et al. Impact of mw-cnt/polymer composites matrix type on the electrical and gas-sensitive properties[J]. Journal of Composite Materials, 2023, 57: 002199832311705.
    [24] SADHANA AGRAWAL, K. S. OJHA, DILIP SAHU. Structural and dielectric studies of mwcnt reinforced microcellular silicone elastomer nanocomposite[J]. Materials Today: Proceedings, 2015, 2(9, Part A): 4516–4520.
    [25] 中国人民解放军总装备部. 雷达吸波材料反射率测试方法: GJB 2038A-2011 [S]. 北京: 中国标准出版社, 2011.

    The General Reserve Department. The measurement methods for reflectivity of radar absorbing material: GJB 2038A-2011 [S]. Beijing: China Standards Press, 2011(in Chinese).
    [26] 罗伟, 王林生, 陈裕欣, 等. 有机-无机复合气凝胶的制备及其阻燃性能研究进展[J]. 复合材料学报, 2021, 38(7): 2056-2069.

    LUO Wei, WANG Linsheng, CHEN Yuxin, et al. Research progress on preparation and flame retardant properties of organic-inorganic composite aerogel[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2056-2069(in Chinese).
    [27] 贾献峰, 陈伟, 马成, 等. 常压干燥制备酚醛树脂基炭气凝胶研究进展[J]. 化学通报, 2021, 84(3): 194-203.

    JIA Xianfeng, CHEN Wei, MA Cheng, et al. Research Progress in the Preparation of Phenolic Resin Based Carbon Aerogels via Ambient Pressure Drying[J]. Huaxue Tongbao, 2021, 84(3): 194-203(in Chinese).
    [28] BAHLOUL-HOURLIER D, LATOURNERIE J, DEMPSEY P. Reaction pathways during the thermal conversion of polysiloxane precursors into oxycarbide ceramics[J]. Journal of the European Ceramic Society, 2005, 25(7): 979-985. doi: 10.1016/j.jeurceramsoc.2004.05.012
    [29] 师建军, 李弘瑜, 张凌东, 等. 烧蚀型防隔热/隐身多功能复合材料制备与性能[J]. 宇航材料工艺, 2021, 51(6): 59-64. doi: 10.12044/j.issn.1007-2330.2021.06.010

    SHI Jianjun, LI Hongyu, ZHANG Lingdong, et al. Preparation and Properties of Multi-Functional Composite Integrated With Heat-Shieling, Insulating and Radar-Absorbing[J]. Aerospace Materials & Technology, 2021, 51(6): 59-64(in Chinese). doi: 10.12044/j.issn.1007-2330.2021.06.010
    [30] JINBO CHENG, HAIGANG SHI, MIN CAO, et al. Porous carbon materials for microwave absorption[J]. Materials Advances, 2020, 1(8): 2631-2645. doi: 10.1039/D0MA00662A
    [31] ZHANG Y, ZHOU W, CHEN H, et al. Facile preparation of cnts microspheres as improved carbon absorbers for high-efficiency electromagnetic wave absorption[J]. Ceramics International, 2021, 47(7, Part A): 10013–10018.
    [32] MAURIZIO NATALI, JOSE MARIA KENNY, LUIGI TORRE. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review[J]. Progress in Materials Science, 2016, 84: 192-275. doi: 10.1016/j.pmatsci.2016.08.003
  • 加载中
计量
  • 文章访问数:  100
  • HTML全文浏览量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-15
  • 录用日期:  2024-05-17
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回