留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池富镍正极基础科学问题:径向有序多晶调控及机理

王硕 武文斌 王鑫 任莉 左美华 邢王燕 范未峰 张彬 向伟

王硕, 武文斌, 王鑫, 等. 锂离子电池富镍正极基础科学问题:径向有序多晶调控及机理[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 王硕, 武文斌, 王鑫, 等. 锂离子电池富镍正极基础科学问题:径向有序多晶调控及机理[J]. 复合材料学报, 2023, 41(0): 1-11
Shuo WANG, Wenbin WU, Xin WANG, Li REN, Meihua ZUO, Wangyan XING, Weifeng FAN, Bin ZHANG, Wei XIANG. Basic scientific problems of nickel-rich cathode for lithium-ion battery: Regulation and formation mechanism of radially oriented parties[J]. Acta Materiae Compositae Sinica.
Citation: Shuo WANG, Wenbin WU, Xin WANG, Li REN, Meihua ZUO, Wangyan XING, Weifeng FAN, Bin ZHANG, Wei XIANG. Basic scientific problems of nickel-rich cathode for lithium-ion battery: Regulation and formation mechanism of radially oriented parties[J]. Acta Materiae Compositae Sinica.

锂离子电池富镍正极基础科学问题:径向有序多晶调控及机理

基金项目: 国家自然科学基金(21805018);四川省科技计划项目(2022ZHCG0018;2023NSFSC0117;2023ZHCG0060);中国博士后科学基金项目(2022M722704);宜宾市动力电池“揭榜挂帅”项目(2022JB005)
详细信息
    通讯作者:

    向伟,博士,副教授,硕士生导师,研究方向为锂离子电池富镍正极材料 E-mail:xiangwei@cdut.edu.cn

  • 中图分类号: TM912

Basic scientific problems of nickel-rich cathode for lithium-ion battery: Regulation and formation mechanism of radially oriented parties

Funds: National Natural Science Foundation of China (21805018); Sichuan Sience and Tehnology Program (2022ZHCG0018; 2023NSFSC0117; 2023ZHCG0060); Project Funded by China Postdoctoral Science Foundation (2022M722704); Yibin Sience and Tehnology Program (2022JB005)
  • 摘要:   目的  一次晶粒径向有序组装的二次颗粒能够较好抑制微裂纹的产生并提供快速的Li扩散路径,是高端多晶富镍锂电正极材料理想的形态。近年来,研究人员通过对前驱体沉淀结晶和正极高温锂化结晶调控,获得了具有较大长宽比晶粒有序组装的富镍正极材料。然而,关于富镍正极径向有序结构调控方法及形成机理的论述,特别是关于径向有序氢氧化物前驱体的调控方法、关键参数对有序结构的影响等并无详细的阐述。因此,分析径向有序组装的晶粒在氢氧化物前驱体结晶及锂化煅烧结晶的过程的机制与调控方法,对开发高性能富镍正极材料极为重要。内容:本文首先介绍了多晶富镍正极径向有序结构调控的必要性及其电化学性能提升的作用机制。传统随机排列的一次晶粒由于充放电过程中的各向异性体积收缩膨胀导致二次颗粒微裂纹的形成。随着循环的进行,微裂纹从二次颗粒内部扩展到表面,使因开裂引发的一系列表面、结构失效持续加重。径向有序排列的多晶颗粒由沿径向方向有序堆积的一次晶粒组成。在充放电过程中各一次晶粒协同膨胀和收缩,显著地抑制二次颗粒微裂纹的产生,促进活性材料的循环稳定性。径向有序富镍正极的合成包括前驱体沉淀结晶调控及锂化煅烧结晶调控,以继承源于前驱体的晶体织构。在氢氧化物前驱体的共沉淀过程中,前驱体的晶体结构、一次颗粒尺寸形貌、生长堆积方式等受到pH、氨浓度、体系温度、进料方式、搅拌速度、反应器类型、体系固含量等因素的影响。其中,pH、氨浓度、搅拌速度、体系固含量最为显著。相对较高的氨浓度和相对较低pH可形成相对较适宜的晶体成核速率,降低晶粒间形成大量新晶核和形成新的晶粒的情况发生,进而使单个一次晶粒生长占据主导,确保形成的多晶前驱体内一次晶粒在径向方向具有较大的尺寸,可从二次颗粒内核贯穿到颗粒表面。相反,过低氨浓度和过高的pH组合、反应器内较高的固含量导致的晶体成核位点增加,将引发快速的晶体成核。二次颗粒表面的部分晶粒生长至一定尺寸后很快被新形成的晶粒所覆盖,被困于二次颗粒内部,导致一次晶粒停滞生长,无法在径向方向形成具有较大尺寸的一次晶粒。通过调整上述条件,减少颗粒生长过程中的晶体不可控成核和团聚是形成有序堆叠的特定尺寸的一次晶粒组装前驱体的关键因素。为避免锂化过程中因长时间或过高温度的煅烧使一次晶粒过度熔融长大(或粗化),使径向有序前驱体的晶粒尺寸及组装方式在锂化过程予以保留,可通过相对较低的煅烧温度(时间)、引入可阻碍Ni、Co、Mn基质原子跨晶界扩散的掺杂元素或可改变单个一次颗粒特定晶面的表面能的掺杂元素来调控晶粒组装的有序性。

     

  • 图  1  (a)三种不同镍含量的富镍正极材料晶胞参数a、c及晶胞体积随充电电压的变化情况[8];(b)无序多晶及径向有序多晶充放电循环过程稳定性示意图[15];(c)径向有序多晶明场STEM[15];(d)径向有序多晶晶粒放大图、选取电子衍射及晶体结构示意图[15]

    Figure  1.  (a) Variations of a- and c-axis lattice parameters and normalized unit cell volume as a function of the cell voltage[8]; (b) Schematic illustration of mechanical stability of the cathodes with randomly oriented particles and radially oriented particles during charge and discharge cycling[15]; (c) Bright-field STEM images of radially oriented particles[15]; (d) Magnified TEM image of textured primary grains, electron diffraction pattern from region marked by yellow circle, and schematic drawing of crystal structure of oriented primary grains[15]

    图  2  (a)氨存在下氢氧化物前驱体一次晶粒(001)晶面择优生长机制[18, 26];(b)球形二次颗粒团聚体的形成示意图[19, 26];(c)无序多晶横截面SEM图像及TEM图像[2];(d)具有无序堆积内核的二次颗粒的截面SEM图像[24];(e)晶粒密实生长的颗粒表面及截面SEM图像[24]

    Figure  2.  (a) Preferential growth mechanism of (001) crystal plane for primary grain in the presence of ammonia[18, 26]; (b) Formation mechanism of spherical secondary particle agglomerates[19, 26]; (c) Cross-sectional SEM and TEM image of randomly oriented precursors[2]; (d) SEM image of the particle with randomly oriented core[24]; (e) SEM images of the particle with compact assembled grains[24]

    图  3  反应时间为1 h (a)、2 h (b)、4 h (c)、6 h (d)、8 h (e)、10 h (f)、22 h (g)前驱体的SEM图像及晶粒组装为颗粒示意图(h) [20]

    Figure  3.  SEM images of the precursors obtained at reaction time for 1 h (a), 2 h (b), 4 h (c), 6 h (d), 8 h (e), 10 h (f), 22 h (g); (h) Diagrammatic sketch for the assembling of secondary particle[20]

    图  4  (a)、(b)具有不同内核大小的径向有序放射状内核及树突状外部区域的前驱体[25];(c)、(d)具有不同孔隙率区域的径向有序前驱体及其示意图[23]

    Figure  4.  (a), (b) Precursors with a radially oriented radial core and a dendritic outer region[25]; (c), (d) Radial oriented precursor with different porosity regions and its corresponding schematic diagram[23]

    图  5  (a)、(b)具有纳米晶粒的核壳前驱体的SEM及TEM图像[27];(c)、(d)具有径向有序纳米棒晶粒的核壳前驱体的SEM及TEM图像[27];(e)、(f)径向有序浓度梯度前驱体的截面SEM及TEM图像[2];(g)、(h)间断进料制备的无序浓度梯度前驱体的截面SEM及TEM图像[2]

    Figure  5.  SEM (a) and TEM (b) image of the core-shell precursor with a nanoparticle shell[27], SEM (c) and TEM (d) images of the core-shell precursor with a nanorod shell[27], (e), (f) Cross-sectional SEM images and TEM images of radially oriented precursors with concentration gradient[2], (g), (h) Cross-sectional SEM images and TEM images of randomly oriented precursors with concentration gradient[2]

    图  6  (a)、(b)、(c)径向有序前驱体及其掺杂2%和4%Al的正极截面SEM图像[2];(d)、(e)径向有序前驱体Ni0.9Co0.1(OH)2未掺杂及掺杂1% Ta在不同温度下煅烧的LiNi0.9Co0.1O2 截面SEM图像[29]

    Figure  6.  Cross-sectional SEM images of radially oriented precursor (a) and corresponding cathodes with 2%Al (b) and 4%Al (c); (d), (e) Cross-sectional SEM images of pristine LiNi0.9Co0.1O2 and Ta doped LiNi0.9Co0.1O2 cathodes, lithiated at different temperatures

  • [1] PARK Geon-Tae, RYU Hoon-Hee, NOH Tae-Chong, et al. Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries[J]. Materials Today, 2021, 52 9-18.
    [2] PARK Geon-Tae, PARK Nam-Yung, NOH Tae-Chong, et al. High-performance Ni-rich LiNi0.9-xCo0.1AlxO2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide[J]. Energy & Environmental Science,2021,14(9):5084-5095.
    [3] NGUYEN Trung Thien, KIM Un-Hyuck, YOON Chong S, et al. Enhanced cycling stability of Sn-doped LiNi0.9Co0.05Mn0.05O2 via optimization of particle shape and orientation[J]. Chemical Engineering Journal, 2021, 405 126887.
    [4] 曹梦圆, 王明星, 邓中莉, 等. 锂离子电池富镍正极基础科学问题: 晶粒形态及组装方式调控[J]. 复合材料学报, 2023, 40(5):1-11.

    CAO Mengyuan, WANG Mingxing, DENG Zhongli, et al. Basic scientific problems of nickel-rich cathode for lithium-ion battery: Morphology and accumulation regulation of primary particles[J]. Acta Materiae Compositae Sinica,2023,40(5):1-11(in Chinese).
    [5] Xiao Penghao, Shi Tan, Huang Wenxuan, et al. Understanding surface densified phases in Ni-rich layered compounds[J]. Acs Energy Letters,2019,4(4):811-818. doi: 10.1021/acsenergylett.9b00122
    [6] LI Jianyu, MANTHIRAM Arumugam. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-Nickel cathodes in Lithium-Ion batteries[J]. Advanced Energy Materials,2019,9(45):1902731. doi: 10.1002/aenm.201902731
    [7] PARK Kang-Joon, HWANG Jang-Yeon, RYU Hoon-Hee, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: Are microcracks really critical?[J]. Acs Energy Letters,2019,4(6):1394-1400. doi: 10.1021/acsenergylett.9b00733
    [8] NAM Gyeong Won, PARK Nam-Yung, PARK Kang-Joon, et al. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent[J]. ACS Energy Letters, 2019, 4 2995-3001.
    [9] RYU Hoon-Hee, PARK Nam-Yung, SEO Jeong Hyun, et al. A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries[J]. Materials Today, 2020, 36 73-82.
    [10] JUNG Sung Hoo, KIM Un-Hyuck, KIM Jae-Hyung, et al. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Advanced Energy Materials,2020,10(6):1903360. doi: 10.1002/aenm.201903360
    [11] KIM Un-Hyuck, RYU Hoon-Hee, KIM Jae-Hyung, et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials,2019,9(15):1803902. doi: 10.1002/aenm.201803902
    [12] NOH Hyung-Joo, CHEN Zonghai, Yoon, CHONG S, et al. Cathode material with nanorod structure-an application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials,2013,25(10):2109-2115. doi: 10.1021/cm4006772
    [13] YOON Chong S, KIM Suk Jun, KIM Un-Hyuck, et al. Microstructure evolution of concentration gradient LiNi0.75Co0.1Mn0.15O2 cathode for lithium-ion batteries[J]. Advanced Functional Materials,2018,28(28):1802090. doi: 10.1002/adfm.201802090
    [14] XU Xing, HUO Hua, JIAN Jiyuan, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 Cathode material for Lithium-Ion batteries[J]. Advanced Energy Materials,2019,9(15):1803963. doi: 10.1002/aenm.201803963
    [15] PARK Kang-Joon, JUNG Hun-Gi, KUO Liang-Yin, et al. Improved cycling stability of LiNi0.9Co0.05Mn0.05O2 through microstructure modification by Boron doping for Li-Ion batteries[J]. Advanced Energy Materials,2018,8(25):1801202. doi: 10.1002/aenm.201801202
    [16] PARK Geon-Tae, YOON Dae Ro, KIM Un-Hyuck, et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries[J]. Energy & Environmental Science, 2021, 14 6616–6626.
    [17] KIM Un-Hyuck, PARK Jeong-Hyeon, AISHOVA Assylzat, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials,2021,11(25):2100884. doi: 10.1002/aenm.202100884
    [18] HUA Weibo, LIU Wenyuan, CHEN Mingzhe, et al. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials [J]. Electrochimica Acta, 2017, 232 123-131.
    [19] YANG Yue, XU Shengming, XIE, Ming, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds, 2015, 619 846-853.
    [20] CHEN Xianglei, LI De, MO Yan, et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018, 261 513-520.
    [21] 王碧武, 黄晓笑, 于建, 等. 一种高镍前驱体材料、其制备方法及应用: 中国, 202110565272.6[P]. 2022-11-15.

    WANG Biwu, HUANG Xiaoxiao, YU Jian, et al. A precursor material for high nickel cathode and its preparation method and application. 202110565272.6[P]. 2022-11-15 (in Chinese).
    [22] 熊俊, 卞益鹏, 高文政, 等. 一种三元前驱体晶须形貌的控制方法: 中国, 202210726493.1[P]. 2022-09-20.

    XIONG Jun, BIAN Yipeng, GAO Wenzheng, et al. A method for controlling the whisker morphology of precursor material for ternary cathode. 202210726493.1[P]. 2022-09-20 (in Chinese).
    [23] 訚硕, 王乐, 张雨英, 等 三元正极材料前驱体及制备方法、正极材料、正极浆料、锂离子电池及正极和涉电设备: 中国, 202111623510.0[P]. 2023-1-24.

    YAN Shuo, WANG Le, ZHANG Yingyu, et al. A precursor material for ternary cathode and its preparation method, cathode, cathode paste, lithium ion battery and electric-related equipment. 202111623510.0[P]. 2023-1-24 (in Chinese).
    [24] 余春林, 陈旭东. 球形高镍三元前驱体材料、其制备方法与高镍三元正极材料: 中国, 202110948253.1[P]. 2021-11-16.

    YU Chunlin, CHEN Xudong, A spherical precursor material for high nickel ternary cathode and its preparation method and corresponding high nickel ternary cathode. 202110948253.1[P]. 2021-11-16 (in Chinese).
    [25] 余春林, 陈旭东, 等. 高镍三元前驱体材料、其制备方法与高镍三元正极材料: 中国, 202110949247.8[P]. 2021-11-16.

    YU Chunlin, CHEN Xudong, ea al. A high-nickel ternary precursor material, its preparation method and high-nickel ternary positive electrode material. 202110949247.8[P]. 2021-11-16 (in Chinese).
    [26] 王鑫, 任莉, 王硕, 等. 锂离子电池富镍正极基础科学问题: 氢氧化物前驱体结晶调控及机制[J]. 复合材料学报, 2022, 39(5):1995-2013.

    WANG Xin, REN Li, WANG Shuo, et al. Basic scientific problems of nickel rich cathode materials for Li-ion battery: Regulation and mechanism for crystallization of hydroxide precursor[J]. Acta Materiae Compositae Sinica,2022,39(5):1995-2013(in Chinese).
    [27] YOON Sung-June, MYUNG Seung-Taek, NOH Hyung-Joo, et al. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries[J]. Chemsuschem,2014,7(12):3295-3303. doi: 10.1002/cssc.201402389
    [28] KIM Un-Hyuck, KIM Jae-Hyung, HWANG Jang-Yeon, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Materials Today, 2018, 23 26-36.
    [29] KIM Un-Hyuck, PARK Geon-Tae, SON Byoung-Ki, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge[J]. Nature Energy, 2021, 860–869.
    [30] YANG Wen, LI Haodong, WANG Dong, et al. Ta induced fine tuning of microstructure and interface enabling Ni-rich cathode with unexpected cyclability in pouch-type full cell[J]. Nano Energy,2022,104:107880. doi: 10.1016/j.nanoen.2022.107880
    [31] SUN H Hohyun, KIM Un-Hyuck, PARK Jeong-Hyeon, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries[J]. Nature communications,2021,12(1):6552-6552. doi: 10.1038/s41467-021-26815-6
    [32] KIM Un-Hyuck, PARK Nam-Yung, PARK Geon-Tae, et al. High-energy W-doped LiNi0.95Co0.04Al0.01O2 cathodes for next-generation electric vehicles[J]. Energy Storage Materials, 2020, 33 399-407.
    [33] PARK Nam-Yung, RYU Hoon-Hee, KUO Liang-Yin, et al. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles[J]. ACS Energy Letters, 2021, 4195-4202.
    [34] ZHU Chaoqiong, CAO Mengyuan, ZHANG Haiyan, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS applied materials & interfaces,2021,13(41):48720-48729.
  • 加载中
计量
  • 文章访问数:  173
  • HTML全文浏览量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-02-28
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-21

目录

    /

    返回文章
    返回