留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米秸秆基木质素-醋酸纤维素紫外屏蔽膜的制备及其性能

林昊 郭东毅 吕谦 贾惜文 周成凤 肖卫华

林昊, 郭东毅, 吕谦, 等. 玉米秸秆基木质素-醋酸纤维素紫外屏蔽膜的制备及其性能[J]. 复合材料学报, 2023, 40(8): 4774-4783
引用本文: 林昊, 郭东毅, 吕谦, 等. 玉米秸秆基木质素-醋酸纤维素紫外屏蔽膜的制备及其性能[J]. 复合材料学报, 2023, 40(8): 4774-4783
LIN Hao, GUO Dongyi, LV Qian, JIA Xiwen, ZHOU Chengfeng, XIAO Weihua. Preparation of corn stover-based lignin-cellulose acetate ultraviolet shielding film and its properties[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4774-4784.
Citation: LIN Hao, GUO Dongyi, LV Qian, JIA Xiwen, ZHOU Chengfeng, XIAO Weihua. Preparation of corn stover-based lignin-cellulose acetate ultraviolet shielding film and its properties[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4774-4784.

玉米秸秆基木质素-醋酸纤维素紫外屏蔽膜的制备及其性能

基金项目: 省部共建生物多糖纤维成形与生态纺织国家重点实验室(青岛大学)开放项目(KF2020202)
详细信息
    通讯作者:

    周成凤,博士,讲师,硕士生导师,研究方向为生物质材料分析和综合利用 E-mail: chengfengzhou@qdu.edu.cn

    肖卫华,博士,副教授,博士生导师,研究方向为生物质资源转化利用 E-mail: xwhddd@163.com

  • 中图分类号: TB332

Preparation of corn stover-based lignin-cellulose acetate ultraviolet shielding film and its properties

Funds: State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (KF2020202)
  • 摘要: 为减少紫外线对人类造成的伤害和对设施的破坏,研究人员已经开发了多种聚合物复合材料结合紫外屏蔽剂的紫外线屏蔽膜。但是大部分聚合物复合材料具有生物降解性差、环境污染严重、回收率较低等缺点。醋酸纤维素具有优异的光学透明性、成膜性、电绝缘性、刚性、高热稳定性和可再生性。有机屏蔽剂具有一定的毒性,在光照下也能够被降解,无机紫外线屏蔽剂可以诱导聚合物光降解。而木质素作为一种天然聚合物具有极强的紫外线吸收性能,可以作为添加剂应用于紫外屏蔽复合材料中。本研究以过氧乙酸复合马来酸预处理(PAM)玉米秸秆得到的纤维素产物为原料,以三氟乙酸作为催化剂和溶剂通过相转化法制备具有紫外屏蔽功能的玉米秸秆基醋酸纤维素膜。随着PAM预处理温度的提高,乙酰化程度和醋酸纤维素产率分别增加到42.19%和93.97%。制得的醋酸纤维素膜(ZCA-80~120)的光学性能表征结果表明:该醋酸纤维素膜紫外线屏蔽性能良好,ZCA-110的中波紫外线(UVB)和长波紫外线(UVA)屏蔽率分别达到96.51%和73.72%。同时,揭示了ZCA-80~120在紫外光区(200~400 nm)的屏蔽率以及在660 nm处透光率(T660)与木质素含量的相关关系:Y1=1.46X+77.04 (R2=0.94),Y2=-6.49X+115.74 (R2=0.86)。采用紫外分光光度计、接触角测试仪、XRD和FT-IR对未添加壳聚糖(ZCA-110)和添加壳聚糖(CS/ZCA-5)的醋酸纤维素膜进行比较研究,发现添加壳聚糖的膜透光率得到改善、亲水性增强、结晶度降低。本研究制备的木质纤维基醋酸纤维素膜将为生物可降解紫外屏蔽材料的研发提供新思路。ZCA-80~120的UVA、UVB屏蔽率和T660(a)以及UV(200~400 nm)屏蔽率与木质素含量的关系(b)

     

  • 图  1  不同过氧乙酸复合马来酸预处理(PAM)预处理温度下的玉米秸秆组成成分(a)和FT-IR光谱图(b)

    Figure  1.  Composition (a) and FT-IR spectrum (b) of corn stover at different peracetic acid and maleic acid pretreatment (PAM) pretreatment temperature

    图  2  乙酰化程度、醋酸纤维素产率(a)和醋酸纤维素的FT-IR光谱图(b)

    Figure  2.  The degree of acetylation, the yield of cellulose acetate (a) and the FT-IR spectrum of cellulose acetate (b)

    图  3  玉米秸秆基醋酸纤维素膜的紫外-可见光透射率曲线(a)和吸光度曲线(b)

    Figure  3.  UV-Vis transmittance curve (a) and absorbance curve (b) of corn stover-based cellulose acetate film

    图  4  ZCA-80~120的UVA、UVB屏蔽率和T660

    Figure  4.  UVA, UVB shielding rates and T660 of ZCA-80~120

    图  5  ZCA-80~120的UV (200~400 nm)屏蔽率(a),T660(b)与木质素含量的关系

    Figure  5.  The relationship between the UV (200~400 nm) shielding rate (a), T660 (b) of ZCA-80~120 and the lignin content

    图  6  ZCA-110与CS/ZCA-5~9的UVA、UVB屏蔽率和T660

    Figure  6.  UVA, UVB shielding rates and T660 of ZCA-110 and CS/ZCA-5~9

    图  7  紫外灯照射前后的玉米秸秆基醋酸纤维素紫外屏蔽膜的接触角示意图

    Figure  7.  Schematic diagram of contact angle of corn stover-based cellulose acetate UV shielding film before and after UV lamp irradiation

    图  8  玉米秸秆基醋酸纤维素紫外屏蔽膜的XRD图(a)和傅里叶变换红外光谱图(b)

    Figure  8.  XRD pattern (a) and FT-IR spectrum (b) of corn stover-based cellulose acetate UV shielding film

  • [1] ZHANG X, SONG L, WANG Z, et al. Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property[J]. International Journal of Biological Macromolecules,2020,145:663-667. doi: 10.1016/j.ijbiomac.2019.12.241
    [2] 刘灵奕, 刘玉清, 王国钦, 等. 紫外线辐射对生态系统和人类健康的影响[J]. 国外医学 (卫生学分册), 2000, 027(5):269-273.

    LIU Lingyi, LIU Yuqing, WANG Guoqin, et al. Effects of ultraviolet radiation on ecosystems and human health[J]. Foreign Medicine (Hygiene Volume),2000,027(5):269-273(in Chinese).
    [3] 周念庭, 周豪, 卫茂平, 等. 不同紫外光对无机纳米材料改性聚丙烯老化行为的影响[J]. 中国塑料, 2016, 30(6):28-33.

    ZHOU Nianting, ZHOU Hao, WEI Maoping, et al. Effects of different ultraviolet light on the aging behavior of polypropylene modified by inorganic nanomaterials[J]. China Plastics,2016,30(6):28-33(in Chinese).
    [4] ZHANG Y, REMADEVI R, HINESTROZA J P, et al. Transparent Ultraviolet (UV)-Shielding Films Made from Waste Hemp Hurd and Polyvinyl Alcohol (PVA)[J]. Polymers,2020,12(5):1190. doi: 10.3390/polym12051190
    [5] WATABE Y, SUZUKI Y, KOIKE S, et al. Cellulose acetate, a new candidate feed supplement for ruminant animals: In vitro evaluations[J]. Journal of Dairy Science,2018,101(12):10929-10938. doi: 10.3168/jds.2018-14969
    [6] CHEN J, XU J, WANG K, et al. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method[J]. Carbohydrate Polymers,2016,137:685-692. doi: 10.1016/j.carbpol.2015.11.034
    [7] LIU H, HU D, CHEN X, et al. Surface engineering of nanoparticles for highly efficient UV-shielding composites[J]. Polymers for Advanced Technologies,2021,32(1):6-16. doi: 10.1002/pat.5081
    [8] BOTLHOKO O J, LETWABA L, BANDYOPADHYAY J, et al. UV-protection, tribology, and mechanical properties of ZnO-containing polyamide composites[J]. Journal of Applied Polymer Science,2019,137(9):48418.
    [9] CHEN X, Xu T, Lei H, et al. Multifunctional nano-ZnO/PMMA composites with high transparency prepared by one-step in situ polymerization[J]. Polymer Composites,2019,40(2):657-663. doi: 10.1002/pc.24705
    [10] ZHANG Y, NAEBE M. Lignin: A Review on Structure, Properties, and Applications as a Light-Colored UV Absorber[J]. ACS Sustainable Chemistry & Engineering,2021,9(4):1427-1442.
    [11] 岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(2):12-20.

    YUE Fengxia, LIN Minsheng, QIAN Yong, et al. Research progress in the application of lignin anti-ultraviolet radiation properties[J]. Chinese Journal of Forestry Engineering,2021,6(2):12-20(in Chinese).
    [12] MIAO Y, Tang Z, ZHANG Q, et al. Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, UV Shielding, and Antioxidant Activity as Wearable Sensors[J]. ACS Applied Polymer Materials,2022,4(2):1448-1456. doi: 10.1021/acsapm.1c01817
    [13] GUILHEN A, GADIOLI R, FERNANDES F C, et al. High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant[J]. Journal of Applied Polymer Science,2017,134(35):45219. doi: 10.1002/app.45219
    [14] PIOTROWSKI J S, OKADA H, LU F, et al. Plant-derived antifungal agent poacic acid targets β-1, 3-glucan[J]. Proceedings of the National Academy of Sciences, 2015, 112(12).
    [15] VINARDELL M P, UGARTONDO V, MITJANS M. Potential applications of antioxidant lignins from different sources[J]. Industrial Crops and Products,2008,27(2):220-223. doi: 10.1016/j.indcrop.2007.07.011
    [16] 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1):434-448.

    WANG Huan, YANG Dongjie, QIAN Yong, et al. Research progress on preparation and application of lignin-based functional materials[J]. Progress in Chemical Industry,2019,38(1):434-448(in Chinese).
    [17] SADEGHIFAR H, VENDITTI R, JUR J, et al. Cellulose-Lignin Biodegradable and Flexible UV Protection Film[J]. ACS sustainable chemistry & engineering,2017,5(1):625-631.
    [18] BIAN H, CHEN L, DONG M, et al. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance[J]. Int J Biol Macromol,2021,166:1578-1585. doi: 10.1016/j.ijbiomac.2020.11.037
    [19] LYU Q, CHEN X, ZHANG Y, et al. One-pot fractionation of corn stover with peracetic acid and maleic acid[J]. Bioresource Technology,2021,320:124306. doi: 10.1016/j.biortech.2020.124306
    [20] National Renewable Energy Laboratory. Determination of Structural Carbohydrates and Lignin in Biomass: NREL/TP-510-42618[S], 2008.
    [21] 肖卫华, 刘润泽, 赵广路, 等. 三氟乙酸催化玉米秸秆纤维素制备三醋酸纤维素研究[J]. 农业机械学报, 2021, 52(9):331-337. doi: 10.6041/j.issn.1000-1298.2021.09.037

    XIAO Weihua, LIU Runze, ZHAO Guanglu, et al. Trifluoroacetic acid-catalyzed preparation of cellulose triacetate from corn stover cellulose[J]. Chinese Journal of Agricultural Machinery,2021,52(9):331-337(in Chinese). doi: 10.6041/j.issn.1000-1298.2021.09.037
    [22] KHAM, L. , LE BIGOT, Y[J]. , DELMAS, M. , et al. Delignification of wheat straw using a mixture of carboxylic acids and peroxoacids. Ind. Crops Prod,2005,21(1):9-15.
    [23] LU, Y. , MOSIER, N[J]. S. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnol. Bioeng,2008,101(6):1170-1181.
    [24] KIM J S, LEE Y Y, KIM T H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass[J]. Bioresource Technology,2016,199:42-48. doi: 10.1016/j.biortech.2015.08.085
    [25] KUMAR R, MAGO G, BALAN V, et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies[J]. Bioresource Technology,2009,100(17):3948-3962. doi: 10.1016/j.biortech.2009.01.075
    [26] TIAN C, YAN M, HUANG X, et al. Highly acetylated lignocellulose prepared by alkaline extrusion pretreatment assisted acetylation reaction[J]. Cellulose,2022,29(3):1487-1500. doi: 10.1007/s10570-021-04397-2
    [27] FISCHER S, THÜMMLER K, VOLKERT B, et al. Properties and Applications of Cellulose Acetate[J]. Macromolecular Symposia,2008,262(1):89-96. doi: 10.1002/masy.200850210
    [28] 赵广路. 玉米秸秆纤维素分离及醋酸纤维素制备的工艺优化研究[D]. 北京: 中国农业大学, 2019.

    ZHAO Guanglu. Research on process optimization of separation of corn stalk cellulose and preparation of cellulose acetate [D]. Beijing: China Agricultural University, 2019(in Chinese).
    [29] HOU G, Liu Y, ZHANG D, et al. Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films[J]. ACS Applied Materials & Interfaces,2020,12(28):31998-32005.
    [30] YOU T. Applications of Molecular Spectroscopic Methods to the Elucidation of Lignin Structure[M]. IntechOpen, 2016.
    [31] LEE S C, TRAN T M T, CHOI J W, et al. Lignin for white natural sunscreens[J]. International Journal of Biological Macromolecules,2019,122:549-554. doi: 10.1016/j.ijbiomac.2018.10.184
    [32] PATRULEA V, OSTAFE V, BORCHARD G, et al. Chitosan as a starting material for wound healing applications[J]. European Journal of Pharmaceutics and Biopharmaceutics,2015,97:417-426. doi: 10.1016/j.ejpb.2015.08.004
    [33] VIJAYAKUMAR R, SIVARAMAN Y, PAVAGADA K M, et al. Synthesis of lignin nanoparticles employing acid precipitation method and its application to enhance the mechanical, UV-barrier and antioxidant properties of chitosan films[J]. International Journal of Polymer Analysis and Characterization,2022,27(2):99-110. doi: 10.1080/1023666X.2021.2016305
    [34] VATANPOUR V, YAVUZTURK Gul B, ZEYTUNCU B, et al. Polysaccharides in fabrication of membranes: A review[J]. Carbohydrate Polymers,2022,281:119041. doi: 10.1016/j.carbpol.2021.119041
    [35] 马豫峰, 蔡继业, 夏科, 等. 硫酸软骨素/壳聚糖自组装复合膜的制备和表征[J]. 电子显微学报, 2004(2):129-133. doi: 10.3969/j.issn.1000-6281.2004.02.008

    MA Yufeng, CAI Jiye, XIA Ke, et al. Preparation and Characterization of Chondroitin Sulfate/Chitosan Self-Assembled Composite Films[J]. Journal of Electron Microscopy,2004(2):129-133(in Chinese). doi: 10.3969/j.issn.1000-6281.2004.02.008
    [36] 王丽鑫, 徐雅雯, 李志森, 等. 高强度醋酸纤维素/壳聚糖复合膜的制备及其性能研究[J]. 林产化学与工业, 2020, 40(4):107-113. doi: 10.3969/j.issn.0253-2417.2020.04.015

    WANG Lixin, XU Yawen, LI Zhisen, et al. Preparation and Properties of High Strength Cellulose Acetate/Chitosan Composite Film[J]. Chemistry and Industry of Forest Products,2020,40(4):107-113(in Chinese). doi: 10.3969/j.issn.0253-2417.2020.04.015
    [37] 刘莹, 孟凡浩, 刘井来, 等. 醋酸纤维素/壳糖复合膜制备与性能优化[J]. 塑料, 2020, 49(2):23-27.

    LIU Ying, MENG Fanhao, LIU Jinglai, et al. Preparation and performance optimization of cellulose acetate/chitosan composite film[J]. Plastics,2020,49(2):23-27(in Chinese).
    [38] ZHOU H, TONG H, LU J, et al. Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water resistant properties[J]. Carbohydrate Polymers,2021,270:118381. doi: 10.1016/j.carbpol.2021.118381
    [39] WAHEED S, AHMAD A, KHAN S M, et al. Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan[J]. Desalination,2014,351:59-69. doi: 10.1016/j.desal.2014.07.019
  • 加载中
图(8)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  149
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2022-10-12
  • 录用日期:  2022-11-03
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回