留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高性能混凝土的自愈合及抗冻性能

阚黎黎 乔宏卓 王飞 刘能 王景波

阚黎黎, 乔宏卓, 王飞, 等. 超高性能混凝土的自愈合及抗冻性能[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 阚黎黎, 乔宏卓, 王飞, 等. 超高性能混凝土的自愈合及抗冻性能[J]. 复合材料学报, 2022, 40(0): 1-10
Lili KAN, Hongzhuo QIAO, Fei WANG, Neng LIU, Jingbo WANG. Self-healing and frost resistance of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica.
Citation: Lili KAN, Hongzhuo QIAO, Fei WANG, Neng LIU, Jingbo WANG. Self-healing and frost resistance of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica.

超高性能混凝土的自愈合及抗冻性能

基金项目: 国家自然科学基金(51508329)
详细信息
    通讯作者:

    阚黎黎,博士,副教授,研究方向为高性能纤维增强复合材料 E-mail: kanlili1@163.com

  • 中图分类号: TU528

Self-healing and frost resistance of ultra-high performance concrete

Funds: National Natural Science Foundation of China (51508329)
  • 摘要: 为研究带裂服役超高性能混凝土(UHPC)的自愈合及抗冻性能,对混杂钢纤维UHPC试件预加0.05%和0.1%两种应变损伤,置于水中养护28 d自愈合后进行300次冻融循环试验。通过单轴拉伸性能,裂缝特征,质量损失及超声波脉冲速率(UPV)指标综合评价UHPC的自愈合及抗冻性能,并利用扫描电子显微镜和能谱仪(SEM-EDS)分析微观结构和愈合产物。结果表明:28 d水养后,预损伤0.05%试件表现出较好的自愈合性能,抗拉强度、拉伸应变和应变能均高于参照试件,表面所有裂缝全部愈合;预损伤0.1%试件的拉伸性能低于参照试件,表面最大裂缝(宽度为69 μm)并未完全愈合。300次冻融循环后,两种预损伤试件的初裂强度和抗拉强度均进一步增加,而拉伸应变和应变能均有所减小。相对质量与UPV的变化趋势能够很好地反映两种预损伤试件的再水化效应。SEM-EDS结果显示:距裂缝较近部位的纤维-基体粘结更牢固;裂缝表面的愈合产物主要为Ca(OH)2和CaCO3,内侧主要为水化硅酸钙(C-S-H)凝胶。

     

  • 图  1  狗骨试件尺寸

    Figure  1.  Geometries of dog-bone shaped specimen

    图  2  超声波脉冲测试示意图: (a)试验装置 (b)测试位置

    Figure  2.  Illustration of ultrasonic pulse measurement: (a) Test setup; (b) Measured position

    图  3  不同预损伤UHPC试件的拉伸应力-应变曲线

    Figure  3.  Tensile stress-strain curves of the different pre-damage UHPC specimens (Pre-loaded strains in fig.(a) and fig.(b) are set as 0.05% and 0.1%, respectively; the labels represent the pre-loaded strain level - pre-loaded (Pre) / re-loaded after healing (SH)/ re-loaded after healing and 300 freezing and thawing cycles (FT), e.g. 0.05%-SH means the specimen with pre-loaded strain of 0.05% is re-loaded after healing)

    图  4  不同UHPC试件的拉伸性能参数:(a)初裂强度;(b)抗拉强度;(c)拉伸应变;(d)应变能

    Figure  4.  Characteristics of tensile properties for different UHPC specimens: (a) Initial cracking strength; (b) Tensile strength; (c) Tensile strain capacity; (d) Strain energy

    图  5  不同UHPC试件的拉伸应变与抗拉强度/初裂强度σ/σoc的关系

    Figure  5.  Relationship between tensile strain and the ratio of the tensile strength/the initial cracking strength σ/σoc for different UHPC specimens

    图  6  两种愈合UHPC试件拉伸后的表面裂缝

    Figure  6.  Surface crack curves of two kinds of healed UHPC specimens after tension

    图  7  不同UHPC试件的相对质量变化

    Figure  7.  Changes in relative mass of different UHPC specimens

    图  8  不同UHPC试件的相对超声波脉冲速率变化

    Figure  8.  Changes in relative ultrasonic pulse velocity of different UHPC specimens

    图  9  冻融作用后0.1%-FT UHPC试样的SEM图像

    Figure  9.  SEM images of the 0.1%-FT UHPC sample after freezing and thawing action

    表  1  水泥和硅灰的化学组成

    Table  1.   Chemical composition of cement and silica fume

    MaterialMass percent(wt%)
    SiO2Al2O3Fe2O3CaOMgOSO3Na2OK2OLOI
    Cement19.33.83.463.52.83.50.10.81.44
    Silica fume93.00.30.80.30.30.80.36-1.5
    下载: 导出CSV

    表  2  混杂钢纤维UHPC配合比

    Table  2.   Mixture proportion of UHPC with hybrid fibers (wt%)

    CementSilica fumeSandWaterSuperplasticizerSteel fibers
    LS
    36.886.1540.988.180.294.583.06
    下载: 导出CSV

    表  3  两种预损伤UHPC试件愈合前后的表面裂缝信息

    Table  3.   Surface crack information of two kinds of pre-damaged UHPC specimens before and after self-healing

    SpecimenNumber of cracksMaximum crack width/μmTotal crack number
    ≤10 μm10-50 μm>50 μm
    0.05%-Pre
    0.05%-SH
    4±21±10±035±135±1
    0±00±00±00±00±0
    0.1%-Pre
    0.1%-SH
    2±11±11±167±214±1
    0±01±10±029±171±1
    下载: 导出CSV

    表  4  EDS元素分析结果

    Table  4.   Analyzed results of elements by EDS

    ElementOCSiCaTotal
    Area-1Mass percent/wt%13.7713.724.3068.21100
    Atom percent/at%22.3129.603.9744.12100
    Area-2Mass percent/wt%10.968.3020.7360.01100
    Atom percent/at%18.9719.1320.4341.46100
    下载: 导出CSV
  • [1] WILLE K, NAAMAN A E, et al. Ultra-high performance concrete with compressive strength exceeding 150 Mpa (22 ksi): A Simpler Way[J]. ACI. MATER,2011,108(1):46-54.
    [2] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学本构模型[J]. 复合材料学报, 2021, 38(11):3925-3938.

    GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositiae Sinica,2021,38(11):3925-3938(in Chinese).
    [3] JIANG J Y, ZHENG X J, WU S P, et al. Nondestructive experimental characterization and numerical simulation on self-healing and chloride ion transport in cracked ultra-high performance concrete[J]. Construction and Building Materials,2019,198:696-709. doi: 10.1016/j.conbuildmat.2018.11.054
    [4] 龚升, 张武满, 张劲松. 橡胶颗粒-钢纤维混掺对碾压混凝土抗冻性及抗冲击性能的影响[J]. 复合材料学报, 2018, 35(8):2199-2207.

    GONG Sheng, ZHANG Wuman, ZHANG Jinsong. Forst resistance and impact properties of roller compacted concrete mixed with rubber particles and steel fibers[J]. Acta Materiae Compositae Sinica,2018,35(8):2199-2207(in Chinese).
    [5] LIBERATO F, VISAR K, FABIO M, et al. Effects of autogenous healing on the recovery of mechanical performance of high performance fiber reinforced cementitious composites (HPFRCCs): Part 1[J]. Cement and Concrete Composites,2017,83:76-100. doi: 10.1016/j.cemconcomp.2017.07.010
    [6] HILLOULIN A B, GRONDINA F, MATALLAHA M, et al. Modelling of autogenous healing in ultra high performance concrete[J]. Cement and Concrete Research,2014,61-62:64-70. doi: 10.1016/j.cemconres.2014.04.003
    [7] GRANGER S, LOUKILI A, PIJAUDIER-CABOT G, et al. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: mechanical tests and acoustic emission analysis[J]. Cement and Concrete Research,2007,37(4):519-527. doi: 10.1016/j.cemconres.2006.12.005
    [8] GUO J Y, WANG J Y, WU K. Effects of self-healing on tensile behavior and air permeability of high strain hardening UHPC[J]. Construction and Building Materials,2019,204:342-356. doi: 10.1016/j.conbuildmat.2019.01.193
    [9] KIM S, KIM M J, YOON H J, et al. Effect of cryogenic temperature on the flexural and cracking behaviors of ultra-high-performance fiber-reinforced concrete[J]. Cryogenics,2018,93:75-85. doi: 10.1016/j.cryogenics.2018.06.002
    [10] KIM S, YOO D Y, KIM M J. Nemkumar B. Self-healing capability of ultra-high-performance fiber-reinforced concrete after exposure to cryogenic temperature[J]. Cement and Concrete Composites,2019,104:103335. doi: 10.1016/j.cemconcomp.2019.103335
    [11] FERRARA L, KRELANI V, MORETTI F, et al. Effects of autogenous healing on the recovery of mechanical performance of high performance fiber reinforced cementitious composites (HPFRCCs): Part 1[J]. Cement and Concrete Composites,2017,83:76-100. doi: 10.1016/j.cemconcomp.2017.07.010
    [12] ZHANG Z G, QIAN S Z, MA H. Investigating mechanical properties and self-healing behavior of micro-cracked ecc with different volume of fly ash[J]. Construction and Building Materials,2014,52:17-23. doi: 10.1016/j.conbuildmat.2013.11.001
    [13] YANG Y Z, LEPECH M D, YANG E H, et al. Autogenous healing of engineered cementitious composites under wet-dry cycles[J]. Cement and Concrete Research,2009,39:382-390. doi: 10.1016/j.cemconres.2009.01.013
    [14] YOO D Y, SHIN W, CHUN B, et al. Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance[J]. Cement and Concrete Research,2020,133:106091. doi: 10.1016/j.cemconres.2020.106091
    [15] YOO D Y, SHIN W. Improvement of fiber corrosion resistance of ultra-high-performance concrete by means of crack width control and repair[J]. Cement and Concrete Composites,2021,121:104073. doi: 10.1016/j.cemconcomp.2021.104073
    [16] HUANG W, KAZEMI-KAMYAB H, SUN W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC)[J]. Cement and Concrete Composites,2017,77:86-101. doi: 10.1016/j.cemconcomp.2016.12.009
    [17] NIU Y F, WEI J X, JIAO C J. Crack propagation behavior of ultra-high-performance concrete (UHPC) reinforced with hybrid steel fibers under flexural loading[J]. Construction and Building Materials,2021,294:123510. doi: 10.1016/j.conbuildmat.2021.123510
    [18] An M Z, WANG Y, YU Z R. Damage mechanisms of ultra-high-performance concrete under freeze–thaw cycling in salt solution considering the effect of rehydration[J]. Construction and Building Materials,2019,198:546-552. doi: 10.1016/j.conbuildmat.2018.11.175
    [19] KAN L L, WANG F, ZHANG Z, et al. Mechanical propertiesof high ductile alkali-activated fiber reinforced composites with different curing ages[J]. Construction and Building Materials,2021,306:124833. doi: 10.1016/j.conbuildmat.2021.124833
    [20] JIANG J Y, ZHENG X J, WU S P, et al. Nondestructive experimental characterization and numerical simulation on self-healing and chloride ion transport in cracked ultra-high performance concrete[J]. Construction and Building Materials,2019,198:696-79. doi: 10.1016/j.conbuildmat.2018.11.054
    [21] ZHAO Y J, SHI T, CAO L Y, et al. Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites[J]. Cement and Concrete Composites,2021,116:103875. doi: 10.1016/j.cemconcomp.2020.103875
    [22] 刘建忠, 韩方玉, 周华新, 等. 超高性能混凝土拉伸力学行为的研究进展[J]. 材料导报, 2017, 31(23):24-32. doi: 10.11896/j.issn.1005-023X.2017.023.003

    LIU Jianzhong, HAN Fangyu, ZHOU Huaxin, et al. An Overview on Tensile Behavior of Ultra-High Performance Concrete[J]. Materials Reports,2017,31(23):24-32(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.003
    [23] RANADE R, STULTS M D, LI V C, et al. Development of high strength high ductility concrete[C]// 2 nd International RILEM Conference on Strain Hardening Cementitious Composites, SHCC2-Rio, Rio de Janeiro, Brazil, 2011: 1-8.
    [24] LEE Y, CHOI J, KIM H K, LEE B Y. Effects of a defoamer on the compressive strength and tensile behavior of alkali-activated slag-based cementless composite reinforced by polyethylene fiber[J]. Composite Structures,2017,172:166-172. doi: 10.1016/j.compstruct.2017.03.095
    [25] 类泽灏. 基于纤维表面改性的超高性能混凝土应变硬化行为研究[D]. 北京交通大学, 2020.

    LEI Ze-hao. Research on strain hardening behavior of ultra-high performance concrete based on fiber surface modification[D]. Beijing Jiaotong University, 2020(in Chinese).
    [26] KAN L L, SHI H S, SAKULICH A R, et al. Self-healing characterization of engineered cementitious composite materials[J]. ACI Mater J,2010,107(6):617-624.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-06-04
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回