Electromagnetic shielding effectiveness and mechanical properties of N,S co-doped carbon/PVDF nanocomposite films
-
摘要: 日益严重的电磁辐射迫切需要高性能的电磁干扰屏蔽材料。杂原子掺杂的碳材料能够通过电荷密度的重新分布感应产生电偶极子,改善极化损耗和传导损耗,增强电磁屏蔽效能(EMI SE)。以亚甲蓝(MB)为氮、硫及碳源,多壁碳纳米管(MWCNTs)为导电骨架及加热层,通过微波炭化制备了N, S共掺杂碳,并与聚偏氟乙烯(PVDF)复合制备了PVDF纳米复合膜。考察了MWCNTs与MB的质量比、复合膜厚度及N, S共掺杂碳填充量对屏蔽性能的影响,由于纳米复合膜具有较好的阻抗匹配性及极化损耗和传导损耗共同作用的电磁干扰屏蔽机制,当MWCNTs和MB的质量比为1∶1时制备的复合膜(厚度为0.9 mm,填充量为20 wt.%)在X波段(8.2-12.4 GHz)具有43.21 dB-45.20 dB的屏蔽性能。此时,通过纳米压痕系统在应变率0.05 s−1下测得复合膜的硬度和弹性模量分别为0.25 GPa和3.60 GPa。Abstract: High performance EMI shielding materials are urgently needed for the increasing electromagnetic radiation. Heteroatom-doped carbon materials are capable of inducing the generation of electric dipoles through the redistribution of charge density, improving polarisation loss and conduction loss, and enhancing electromagnetic shielding effectiveness (EMI SE). N, S co-doped carbon was prepared by microwave carbonization using methylene blue (MB) as nitrogen, sulphur and carbon source, and multi-walled carbon nanotubes (MWCNTs) as conductive backbone and heating layer, and PVDF nanocomposite film was prepared by composite with polyvinylidene fluoride (PVDF). The effects of the mass ratio of MWCNTs to MB, the thickness of the composite film and the filling amount of N, S co-doped carbon on the shielding performance were investigated. Due to the nanocomposite film's good impedance matching and the electromagnetic interference shielding mechanism of polarisation and conduction losses, the composite film prepared when the mass ratio of MWCNTs to MB is 1∶1 (thickness of 0.9 mm, filling amount of 20 wt.%) had a shielding performance of 43.21 dB-45.20 dB in the X-band (8.2-12.4 GHz).At this point, the hardness and modulus of elasticity of the composite film were measured to be 0.25 GPa and 3.60 GPa, respectively, by a nanoindentation system at a strain rate of 0.05 s−1.
-
Key words:
- N /
- S co-doped /
- electromagnetic shielding /
- mechanical properties /
- microwave carbonization
-
图 3 不同投料比、微波功率和时间条件下的N, S共掺杂碳样品的SEM图: (a) MWCNTs; (b) MWCNTs∶MB=1∶1, 800 W 90 s; (c) MWCNTs∶MB=1∶1, 1000 W 90 s; (d) MWCNTs∶MB=1∶1, 1000 W 120 s; (e) MWCNTs∶MB=2∶1, 1000 W 90 s; (f) MWCNTs∶MB=1∶2, 1000 W 90 s; (c1) c的局部放大图; (c1’-c1’’’) c1的元素映射图像
Figure 3. SEM images of N, S-codoped carbon samples with different feeding ratios, microwave power and time conditions: (a) MWCNTs; (b) MWCNTs∶MB=1∶1, 800 W 90 s; (c) MWCNTs∶MB=1∶1, 1000 W 90 s; (d) MWCNTs∶MB=1∶1, 1000 W 120 s; (e) MWCNTs∶MB=2∶1, 1000 W 90 s; (f) MWCNTs∶MB=1∶2, 1000 W 90 s; (c1) a locally enlarged image of c; (c1’-c1’’’) the elemental mapping image of c1
图 4 (a) PVDF; (b) PVDF2-10; (c)PVDF2-20; (d)PVDF2-25分别为PVDF纳米复合膜的表面SEM图像; (e-l)分别为相应截断面的SEM图像及局部放大图像
Figure 4. (a) PVDF; (b) PVDF2-10; (c) PVDF2-20; and (d) PVDF2-25 are the surface SEM images of the PVDF nanocomposite film, respectively; (e-l) are the SEM images of the corresponding truncated surfaces and the local magnification images, respectively
图 6 PVDF纳米复合薄的EMI SE(a)不同微波条件;(b)不同投料比;(c)不同填充量和(d)不同厚度;PVDF2-20(厚度0.9 mm)纳米复合膜的(e) SER、SEA和SET和(f) R,A
Figure 6. EMI SE of PVDF nanocomposite films (a) different microwave conditions; (b) different feeding ratios; (c) different filler amounts and (d) different thicknesses.PVDF2-20 (thickness 0.9 mm) nanocomposite films of (e) SER, SEA and SET and (f) R,A
表 1 不同投料比、微波功率和时间条件下的N, S共掺杂碳/PVDF纳米复合膜样品
Table 1. The samples of N, S co-doped carbon/PVDF nanocomposite films under different feed ratios, microwave power and time conditions
Samples MWCNTs:MB MWCNTs/mg MB/mg Microwave power/W Microwave
time/sPVDF1-Y 1∶1 20 20 800 90 PVDF2-Y 1∶1 20 20 1000 90 PVDF3-Y 1∶1 20 20 1000 120 PVDF4-Y 1∶2 10 20 1000 90 PVDF5-Y 2∶1 20 10 1000 90 Notes:MWCNTs—Multi-walled carbon nanotubes; MB—Methylene blue; PVDF—Polyvinylidene fluoride; The prepared composite membranes were named PVDFx-Y (x is the corresponding sample label under different conditions in Table 1, and Y is the mass filling amount of N, S co-doped carbon in the PVDF matrix), e.g., PVDF2-20 denotes the composite membranes prepared when Sample 2 was filled with 20 wt.% in the PVDF matrix. -
[1] 王在铎, 马晶晶, 王方颉, 等. 填充复合型聚合物基电磁屏蔽材料研究进展[J]. 宇航材料工艺, 2022, 52(5): 1-7. doi: 10.12044/j.issn.1007-2330.2022.05.001WANG Zaiduo, MA Jingjing, WANG Fangxie, et al. Research progress in filled composite polymer based electromagnetic shielding materials[J]. Aerospace Materials & Technology, 2022, 52(5): 1-7(in Chinese). doi: 10.12044/j.issn.1007-2330.2022.05.001 [2] TIAN K, HU D R, WEI Q, et al. Recent progress on multifunctional electromagnetic interference shielding polymer composites[J]. Journal of Materials Science & Technology, 2023, 134: 106-131. [3] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5): 1358-1370.ZHANG Menghui, MA Zhonglei, MA Jianzhong, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1358-1370(in Chinese). [4] LIANG C B, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous Carbon composites with wall-like "Mortar/Brick" structures for electromagnetic interference shielding[J]. Science Bulletin, 2020, 65(8): 616-622. doi: 10.1016/j.scib.2020.02.009 [5] GUPTA S, CHANG C, LAI C H, et al. Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding[J]. Composites, 2019, 164(1): 447-457. [6] XU X J, YAO F C, ALI O A A, et al. Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2002-2011. doi: 10.1007/s42114-022-00538-8 [7] YUAN Y, LIU L Y, YANG M L, et al. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding[J]. Carbon, 2017, 123: 223-232. doi: 10.1016/j.carbon.2017.07.060 [8] LIU P B, GAO S, CHEN C, et al. Vacancies-Engineered and Heteroatoms-Regulated N-Doped Porous Carbon Aerogel for Ultrahigh Microwave Absorption[J]. Carbon, 2020, 169: 276-287. doi: 10.1016/j.carbon.2020.07.063 [9] ZHANG H M, ZHANG G C, GAO Q, et al. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal, 2019, 379: 122304. [10] CHEN J, LIAO X, LI S J, et al. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106059. doi: 10.1016/j.compositesa.2020.106059 [11] CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C Materials for Optical & Electronic Devices, 2018, 6(17): 4586-4602. [12] ZHANG D Q, LIU T T, CHENG J Y, et al. Lightweight and High-Performance Microwave Absorber Based on 2D WS2-RGO Heterostructures[J]. Nano-Micro Letters, 2019, (3): 21-35. [13] WU L, SHU R, ZHANG J, et al. Synthesis of three-dimensional porous netlike nitrogen-doped reduced graphene oxide/cerium oxide composite aerogels towards high-efficiency microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 608: 1212-1221. doi: 10.1016/j.jcis.2021.10.112 [14] WANG M L, ZHOU Z H, ZHU J L, et al. Tunable high-performance electromagnetic interference shielding of intrinsic N-doped chitin-based carbon aerogel[J]. Carbon, 2022, 198: 142-150. doi: 10.1016/j.carbon.2022.07.016 [15] LI C F, ZHOU C X, LV J B, et al. Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam[J]. Carbon, 2019, 149: 190-202. doi: 10.1016/j.carbon.2019.04.012 [16] HU H, GAO T, ZHAO X, et al. Ultralight and high-elastic carbon foam with hollow framework for dynamically tunable electromagnetic interference shielding at gigahertz frequency[J]. Carbon, 2019, 153: 330-336. doi: 10.1016/j.carbon.2019.06.037 [17] FAISAL S, PRADIP K, SEUNGGUN Y, et al. Sulfur-doped graphene laminates for EMI shielding applications[J]. The Royal Society of Chemistry, 2015, 3(38): 9802-9810. [18] ZHONG W X, LI B, MA Z, et al. Double salt-template strategy for the growth of N, S-codoped graphitic carbon nanoframes on the graphene toward high-performance electromagnetic wave absorption[J]. Carbon, 2023, 202: 235-243. doi: 10.1016/j.carbon.2022.10.086 [19] BI R B, ZHANG T T, DU L J, et al. Microwave synthesis of nitrogen and sulfur doping lignin-based carbon materials for high-cycling performance supercapacitor[J]. Ionics, 2022, 28(9): 4413-4424. doi: 10.1007/s11581-022-04669-2 [20] 李彦明. 多壁碳纳米管/聚酰亚胺复合薄膜的制备和性能研究 [D]. 西安: 长安大学, 2020.LI Yanming. Preparation and Properties of Multi-walled Carbon Nanotubes / Polyimide Composite Film [D]. Xi’an: Chang’an University, 2020(in Chinese). [21] 黄从树. 多壁碳纳米管/聚酰亚胺复合薄膜的制备及其性能研究 [D]. 兰州: 兰州大学, 2008.HUANG Congshu. Study on preparation and properties of Multi-walled carbon nanotubers/polyimide composites films [D]. Lanzhou: Lanzhou University, 2008(in Chinese). [22] 盖军, 冯阳阳, 柴鹏, 等. PVDF/TiO2电纺纤维膜在光降解和油水分离方面的应用[J]. 功能高分子学报, 2021, 34(5): 483-489.GE Jun, FENG Yangyang, CHAI Peng, et al. Application of PVDF/TiO2 Electrospun Fiber Membrane in Photodegradation and Oil-Water Separation[J]. Journal of Functional Polymers, 2021, 34(5): 483-489(in Chinese). [23] REN P G, HE W W, DAI Z, et al. One-step synthesis of nitrogen, sulfur co-doped interconnected porous carbon derived from methylene blue for high-performance supercapacitors[J]. Diamond and Related Materials, 2020, 109(1): 108028. [24] YANG X M, HE H H, LV T, et al. Fabrication of biomass-based functional carbon materials for energy conversion and storage[J]. Materials Science & Engineering R, 2023, 154: 100736. [25] 瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261.QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261(in Chinese). [26] JIA L C , YAN D X , YANG Y C, et al. High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite[J]. Advanced Materials Technologies, 2017, 2(7): 1700078. [27] YUAN Y, YIN W L, YANG M L, et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018, 130: 59-68. doi: 10.1016/j.carbon.2017.12.122 [28] WANG L, CHEN L X, SONG P, et al. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application[J]. Composites Part B, 2019, 171: 111-118. doi: 10.1016/j.compositesb.2019.04.050
计量
- 文章访问数: 90
- HTML全文浏览量: 55
- 被引次数: 0