留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N,S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能

赵宏婷 王鹤峰 罗居杰 贾宜委 何艳骄 树学峰

赵宏婷, 王鹤峰, 罗居杰, 等. N,S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 赵宏婷, 王鹤峰, 罗居杰, 等. N,S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHAO Hongting, WANG Hefeng, LUO Jujie, et al. Electromagnetic shielding effectiveness and mechanical properties of N,S co-doped carbon/PVDF nanocomposite films[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Hongting, WANG Hefeng, LUO Jujie, et al. Electromagnetic shielding effectiveness and mechanical properties of N,S co-doped carbon/PVDF nanocomposite films[J]. Acta Materiae Compositae Sinica.

N,S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能

基金项目: 中国—白俄罗斯电磁环境效应“一带一路”联合实验室(ZBKF2022031101)
详细信息
    通讯作者:

    王鹤峰,博士,副教授,硕士生导师,研究方向为金属力学性能实验表征 E-mail: whftyut@163.com

  • 中图分类号: TB332

Electromagnetic shielding effectiveness and mechanical properties of N,S co-doped carbon/PVDF nanocomposite films

Funds: China-Belarus Electromagnetic Environmental Effects "One Belt, One Road" Joint Laboratory (ZBKF2022031101)
  • 摘要: 日益严重的电磁辐射迫切需要高性能的电磁干扰屏蔽材料。杂原子掺杂的碳材料能够通过电荷密度的重新分布感应产生电偶极子,改善极化损耗和传导损耗,增强电磁屏蔽效能(EMI SE)。以亚甲蓝(MB)为氮、硫及碳源,多壁碳纳米管(MWCNTs)为导电骨架及加热层,通过微波炭化制备了N, S共掺杂碳,并与聚偏氟乙烯(PVDF)复合制备了PVDF纳米复合膜。考察了MWCNTs与MB的质量比、复合膜厚度及N, S共掺杂碳填充量对屏蔽性能的影响,由于纳米复合膜具有较好的阻抗匹配性及极化损耗和传导损耗共同作用的电磁干扰屏蔽机制,当MWCNTs和MB的质量比为1∶1时制备的复合膜(厚度为0.9 mm,填充量为20 wt.%)在X波段(8.2-12.4 GHz)具有43.21 dB-45.20 dB的屏蔽性能。此时,通过纳米压痕系统在应变率0.05 s−1下测得复合膜的硬度和弹性模量分别为0.25 GPa和3.60 GPa。

     

  • 图  1  N, S共掺杂碳/PVDF纳米复合膜的制备流程图

    Figure  1.  Flow chart of N, S co-doped carbon/PVDF nanocomposite membrane preparation

    图  2  (a) 不同微波功率和时间条件下N,S共掺杂碳的FTIR; (b) PVDF纳米复合膜的FTIR

    Figure  2.  FTIR of (a) all microwave time powers of N,S co-doped carbon and (b) PVDF nanocomposite films

    图  3  不同投料比、微波功率和时间条件下的N, S共掺杂碳样品的SEM图: (a) MWCNTs; (b) MWCNTs∶MB=1∶1, 800 W 90 s; (c) MWCNTs∶MB=1∶1, 1000 W 90 s; (d) MWCNTs∶MB=1∶1, 1000 W 120 s; (e) MWCNTs∶MB=2∶1, 1000 W 90 s; (f) MWCNTs∶MB=1∶2, 1000 W 90 s; (c1) c的局部放大图; (c1’-c1’’’) c1的元素映射图像

    Figure  3.  SEM images of N, S-codoped carbon samples with different feeding ratios, microwave power and time conditions: (a) MWCNTs; (b) MWCNTs∶MB=1∶1, 800 W 90 s; (c) MWCNTs∶MB=1∶1, 1000 W 90 s; (d) MWCNTs∶MB=1∶1, 1000 W 120 s; (e) MWCNTs∶MB=2∶1, 1000 W 90 s; (f) MWCNTs∶MB=1∶2, 1000 W 90 s; (c1) a locally enlarged image of c; (c1’-c1’’’) the elemental mapping image of c1

    图  4  (a) PVDF; (b) PVDF2-10; (c)PVDF2-20; (d)PVDF2-25分别为PVDF纳米复合膜的表面SEM图像; (e-l)分别为相应截断面的SEM图像及局部放大图像

    Figure  4.  (a) PVDF; (b) PVDF2-10; (c) PVDF2-20; and (d) PVDF2-25 are the surface SEM images of the PVDF nanocomposite film, respectively; (e-l) are the SEM images of the corresponding truncated surfaces and the local magnification images, respectively

    图  5  当MB与MWCNTs的质量比为1∶1时所得N, S共掺杂碳的(a) XPS测量光谱和(b) C 1s; (c) N 1s; (d) S 2p高分辨率光谱

    Figure  5.  (a) XPS survey spectrum and high-resolution scan for (b) C 1s; (c) N 1s; (d) S 2p of N, S co-doped carbon obtained when the mass ratio of MB to MWCNTs is 1∶1

    图  6  PVDF纳米复合薄的EMI SE(a)不同微波条件;(b)不同投料比;(c)不同填充量和(d)不同厚度;PVDF2-20(厚度0.9 mm)纳米复合膜的(e) SER、SEA和SET和(f) R,A

    Figure  6.  EMI SE of PVDF nanocomposite films (a) different microwave conditions; (b) different feeding ratios; (c) different filler amounts and (d) different thicknesses.PVDF2-20 (thickness 0.9 mm) nanocomposite films of (e) SER, SEA and SET and (f) R,A

    图  7  PVDF纳米复合膜的(a) 代表性载荷-位移曲线; (b) 弹性模量-硬度

    Figure  7.  (a) Representative load-displacements; (b) Elastic modulus and hardness of PVDF nanocomposite films

    表  1  不同投料比、微波功率和时间条件下的N, S共掺杂碳/PVDF纳米复合膜样品

    Table  1.   The samples of N, S co-doped carbon/PVDF nanocomposite films under different feed ratios, microwave power and time conditions

    Samples MWCNTs:MB MWCNTs/mg MB/mg Microwave power/W Microwave
    time/s
    PVDF1-Y 1∶1 20 20 800 90
    PVDF2-Y 1∶1 20 20 1000 90
    PVDF3-Y 1∶1 20 20 1000 120
    PVDF4-Y 1∶2 10 20 1000 90
    PVDF5-Y 2∶1 20 10 1000 90
    Notes:MWCNTs—Multi-walled carbon nanotubes; MB—Methylene blue; PVDF—Polyvinylidene fluoride; The prepared composite membranes were named PVDFx-Y (x is the corresponding sample label under different conditions in Table 1, and Y is the mass filling amount of N, S co-doped carbon in the PVDF matrix), e.g., PVDF2-20 denotes the composite membranes prepared when Sample 2 was filled with 20 wt.% in the PVDF matrix.
    下载: 导出CSV
  • [1] 王在铎, 马晶晶, 王方颉, 等. 填充复合型聚合物基电磁屏蔽材料研究进展[J]. 宇航材料工艺, 2022, 52(5): 1-7. doi: 10.12044/j.issn.1007-2330.2022.05.001

    WANG Zaiduo, MA Jingjing, WANG Fangxie, et al. Research progress in filled composite polymer based electromagnetic shielding materials[J]. Aerospace Materials & Technology, 2022, 52(5): 1-7(in Chinese). doi: 10.12044/j.issn.1007-2330.2022.05.001
    [2] TIAN K, HU D R, WEI Q, et al. Recent progress on multifunctional electromagnetic interference shielding polymer composites[J]. Journal of Materials Science & Technology, 2023, 134: 106-131.
    [3] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5): 1358-1370.

    ZHANG Menghui, MA Zhonglei, MA Jianzhong, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1358-1370(in Chinese).
    [4] LIANG C B, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous Carbon composites with wall-like "Mortar/Brick" structures for electromagnetic interference shielding[J]. Science Bulletin, 2020, 65(8): 616-622. doi: 10.1016/j.scib.2020.02.009
    [5] GUPTA S, CHANG C, LAI C H, et al. Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding[J]. Composites, 2019, 164(1): 447-457.
    [6] XU X J, YAO F C, ALI O A A, et al. Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2002-2011. doi: 10.1007/s42114-022-00538-8
    [7] YUAN Y, LIU L Y, YANG M L, et al. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding[J]. Carbon, 2017, 123: 223-232. doi: 10.1016/j.carbon.2017.07.060
    [8] LIU P B, GAO S, CHEN C, et al. Vacancies-Engineered and Heteroatoms-Regulated N-Doped Porous Carbon Aerogel for Ultrahigh Microwave Absorption[J]. Carbon, 2020, 169: 276-287. doi: 10.1016/j.carbon.2020.07.063
    [9] ZHANG H M, ZHANG G C, GAO Q, et al. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal, 2019, 379: 122304.
    [10] CHEN J, LIAO X, LI S J, et al. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106059. doi: 10.1016/j.compositesa.2020.106059
    [11] CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C Materials for Optical & Electronic Devices, 2018, 6(17): 4586-4602.
    [12] ZHANG D Q, LIU T T, CHENG J Y, et al. Lightweight and High-Performance Microwave Absorber Based on 2D WS2-RGO Heterostructures[J]. Nano-Micro Letters, 2019, (3): 21-35.
    [13] WU L, SHU R, ZHANG J, et al. Synthesis of three-dimensional porous netlike nitrogen-doped reduced graphene oxide/cerium oxide composite aerogels towards high-efficiency microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 608: 1212-1221. doi: 10.1016/j.jcis.2021.10.112
    [14] WANG M L, ZHOU Z H, ZHU J L, et al. Tunable high-performance electromagnetic interference shielding of intrinsic N-doped chitin-based carbon aerogel[J]. Carbon, 2022, 198: 142-150. doi: 10.1016/j.carbon.2022.07.016
    [15] LI C F, ZHOU C X, LV J B, et al. Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam[J]. Carbon, 2019, 149: 190-202. doi: 10.1016/j.carbon.2019.04.012
    [16] HU H, GAO T, ZHAO X, et al. Ultralight and high-elastic carbon foam with hollow framework for dynamically tunable electromagnetic interference shielding at gigahertz frequency[J]. Carbon, 2019, 153: 330-336. doi: 10.1016/j.carbon.2019.06.037
    [17] FAISAL S, PRADIP K, SEUNGGUN Y, et al. Sulfur-doped graphene laminates for EMI shielding applications[J]. The Royal Society of Chemistry, 2015, 3(38): 9802-9810.
    [18] ZHONG W X, LI B, MA Z, et al. Double salt-template strategy for the growth of N, S-codoped graphitic carbon nanoframes on the graphene toward high-performance electromagnetic wave absorption[J]. Carbon, 2023, 202: 235-243. doi: 10.1016/j.carbon.2022.10.086
    [19] BI R B, ZHANG T T, DU L J, et al. Microwave synthesis of nitrogen and sulfur doping lignin-based carbon materials for high-cycling performance supercapacitor[J]. Ionics, 2022, 28(9): 4413-4424. doi: 10.1007/s11581-022-04669-2
    [20] 李彦明. 多壁碳纳米管/聚酰亚胺复合薄膜的制备和性能研究 [D]. 西安: 长安大学, 2020.

    LI Yanming. Preparation and Properties of Multi-walled Carbon Nanotubes / Polyimide Composite Film [D]. Xi’an: Chang’an University, 2020(in Chinese).
    [21] 黄从树. 多壁碳纳米管/聚酰亚胺复合薄膜的制备及其性能研究 [D]. 兰州: 兰州大学, 2008.

    HUANG Congshu. Study on preparation and properties of Multi-walled carbon nanotubers/polyimide composites films [D]. Lanzhou: Lanzhou University, 2008(in Chinese).
    [22] 盖军, 冯阳阳, 柴鹏, 等. PVDF/TiO2电纺纤维膜在光降解和油水分离方面的应用[J]. 功能高分子学报, 2021, 34(5): 483-489.

    GE Jun, FENG Yangyang, CHAI Peng, et al. Application of PVDF/TiO2 Electrospun Fiber Membrane in Photodegradation and Oil-Water Separation[J]. Journal of Functional Polymers, 2021, 34(5): 483-489(in Chinese).
    [23] REN P G, HE W W, DAI Z, et al. One-step synthesis of nitrogen, sulfur co-doped interconnected porous carbon derived from methylene blue for high-performance supercapacitors[J]. Diamond and Related Materials, 2020, 109(1): 108028.
    [24] YANG X M, HE H H, LV T, et al. Fabrication of biomass-based functional carbon materials for energy conversion and storage[J]. Materials Science & Engineering R, 2023, 154: 100736.
    [25] 瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261.

    QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261(in Chinese).
    [26] JIA L C , YAN D X , YANG Y C, et al. High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite[J]. Advanced Materials Technologies, 2017, 2(7): 1700078.
    [27] YUAN Y, YIN W L, YANG M L, et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018, 130: 59-68. doi: 10.1016/j.carbon.2017.12.122
    [28] WANG L, CHEN L X, SONG P, et al. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application[J]. Composites Part B, 2019, 171: 111-118. doi: 10.1016/j.compositesb.2019.04.050
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-01
  • 录用日期:  2024-04-03
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回