留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diels-Alder型热修复木质素/三元乙丙橡胶的制备及性能

张润琦 玄璐佳 杨尚毅 于萌萌 王洪振

张润琦, 玄璐佳, 杨尚毅, 等. Diels-Alder型热修复木质素/三元乙丙橡胶的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 张润琦, 玄璐佳, 杨尚毅, 等. Diels-Alder型热修复木质素/三元乙丙橡胶的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-13.
ZHANG Runqi, XUAN Lujia, YANG Shangyi, et al. Preparation and properties of Diels-Alder reactive thermal-heating lignin/EPDM rubber[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Runqi, XUAN Lujia, YANG Shangyi, et al. Preparation and properties of Diels-Alder reactive thermal-heating lignin/EPDM rubber[J]. Acta Materiae Compositae Sinica.

Diels-Alder型热修复木质素/三元乙丙橡胶的制备及性能

基金项目: 国家重点研发计划项目(2022YFD2301204);山东省自然科学基金项目(ZR 2020MB 041)
详细信息
    通讯作者:

    王洪振,博士,副教授,硕士生导师,研究方向为环境友好型橡胶材料的制备及绿色加工 E-mail: qustwhz@163.com

  • 中图分类号: TQ333.4; TB332

Preparation and properties of Diels-Alder reactive thermal-heating lignin/EPDM rubber

Funds: National Key Research and Development Program of China (2022YFD2301204); Natural Science Foundation of Shangdong Province (ZR 2020MB 041)
  • 摘要: 为改善橡胶材料废弃后的环境污染问题,以糠醛改性木质素(F-Lig)为填料,采用固相共混法制备了Diels-Alder型热修复三元乙丙橡胶(CEF-Lig)。通过可逆交联网络的断裂和重建赋予了CEF-Lig复合材料高温熔融加工、低温交联成型的特性,并探究了F-Lig含量对CEF-Lig材料的微观结构、力学性能和热修复性能的影响。结果表明:成功制备出具有热修复可回收特性的CEF-Lig复合材料;随F-Lig含量增加,拉伸强度呈现先增加后下降的趋势,CEF-Lig7的拉伸强度达到最大值4.6 MPa,为不含F-Lig对照组(CEPDM)的4.6倍;F-Lig的加入提高了CEF-Lig材料的热分解温度,CEF-Lig9最大分解速率对应的温度(Tmax)相比CEPDM提升8.8 ℃;CEF-Lig材料具有良好的热修复能力,力学强度的一次修复效率均在70%以上,二次修复效率均在60%以上。此外,采用固相共混法工艺,有效避免了溶剂污染,提高了生产效率,为其他可逆交联聚合物的制备提供参考。

     

  • 图  1  (a) F-Lig合成路线图;(b) F-Lig合成装置图;(c) CEF-Lig制备流程图

    Figure  1.  (a) Synthetic route of F-Lig; (b) Synthetic device of F-Lig; (c) Preparation process of CEF-Lig

    图  2  Lig与F-Lig的红外光谱图

    Figure  2.  FTIR spectra of Lig and F-Lig

    图  3  核磁共振氢谱图 (a)Lig;(b)F-Lig

    Figure  3.  1H NMR spectra (a)Lig; (b)F-Lig

    图  4  CEPDM和不同F-Lig用量CEF-Lig的红外光谱图

    Figure  4.  FTIR spectra of CEPDM and CEF-Lig with different F-Lig dosage

    图  5  CEPDM和不同F-Lig用量CEF-Lig的应力-应变曲线

    Figure  5.  Stress-strain curves of CEPDM and CEF-Lig with different F-Lig dosage

    图  6  CEPDM和不同F-Lig用量CEF-Lig的tanδ曲线

    Figure  6.  Tanδ curves of CEPDM and CEF-Lig with different F-Lig dosage

    图  7  (a) 室温下CEF-Lig在十氢萘溶剂中的溶胀示意图;(b) 高温下CEF-Lig在十氢萘溶剂中的溶解示意图

    Figure  7.  (a) Swelling diagram of CEF-Lig in decahydronaphthalene solvent at room temperature; (b) Schematic diagram of dissolution of CEF-Lig in decahydronaphthalene solvent at high temperature

    图  8  CEPDM和不同F-Lig用量CEF-Lig的(a) TG和(b) DTG曲线

    Figure  8.  (a) TG and (b) DTG curves of CEPDM and CEF-Lig with different F-Lig dosage

    图  9  脆性断裂面SEM图像 (a) CEPDM;(b) CEF-Lig3;(c) CEF-Lig5;(d) CEF-Lig7;(e)CEF-Lig9

    Figure  9.  SEM image of a brittle fracture surface (a) CEPDM; (b) CEF-Lig3; (c) CEF-Lig5; (d) CEF-Lig7; (e) CEF-Lig9

    图  10  (a) 修复后试样的宏观演示图;(b) CEF-Lig热修复机制示意图

    Figure  10.  (a) Macroscopic demonstration of repaired specimens; (b) Thermal repair schematic of CEF-Lig

    图  11  CEF-Lig3初始和修复后的红外光谱图

    Figure  11.  The initial and repaired FTIR spectra of CEF-Lig3

    图  12  初始材料和修复后材料的应力-应变曲线 (a)CEF-Lig1; (b) CEF-Lig3;(c) CEF-Lig5;(d) CEF-Lig7;(e) CEF-Lig9

    Figure  12.  Stress-strain curves of the initial and repaired specimens (a) CEF-Lig1; (b) CEF-Lig3; (c) CEF-Lig5; (d) CEF-Lig7; (e) CEF-Lig9

    图  13  CEF-Lig力学强度修复效率

    Figure  13.  Tensile strength repair efficiency of CEF-Lig

    图  14  CEF-Lig初始样品和修复后样品的硬度

    Figure  14.  Hardness of the initial and repaired samples of CEF-Lig

    图  15  CEF-Lig初始样品和修复后样品的交联密度

    Figure  15.  The crosslinking density of the initial and repaired samples of CEF-Lig

    表  1  CEPDM和不同F-Lig用量CEF-Lig的配方组成(质量份/phr)

    Table  1.   Formulation composition of CEPDM and CEF-Lig with different F-Lig dosages (mass parts/phr)

    Samples EPDM SEF F-Lig BMI DCP
    CEPDM 100 6.5 0 10 0.2
    CEF-Lig1 100 6.5 4 10 0.2
    CEF-Lig3 100 6.5 12 10 0.2
    CEF-Lig5 100 6.5 20 10 0.2
    CEF-Lig7 100 6.5 28 10 0.2
    CEF-Lig9 100 6.5 36 10 0.2
    Notes: EPDMEthylene-propylene-diene monomer; SEFStyrene-based furan monomer; F-LigFuran-modified lignin; BMI1,1'-(Methylenedi-4,1-phenylene)bismaleimide; DCPDicumyl peroxide.
    下载: 导出CSV

    表  2  CEPDM和不同F-Lig用量CEF-Lig的应力应变数据

    Table  2.   Stress-strain data of CEPDM and CEF-Lig with different F-Lig dosage

    SamplesTensile strength/MPaUltimate elongation/%
    CEPDM1.0±0.1312.3±5.3
    CEF-Lig12.5±0.3349.4±6.1
    CEF-Lig33.1±0.3278.9±5.5
    CEF-Lig53.8±0.2238.8±7.4
    CEF-Lig74.5±0.1192.3±4.5
    CEF-Lig94.4±0.1147.2±3.2
    下载: 导出CSV
  • [1] ZHANG G G, ZHOU X X, LIANG K, et al. Mechanically robust and recyclable EPDM rubber composites by a green cross-linking strategy[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11712-11720.
    [2] JIN W S, SAHU P, PARK S M, et al. Design of self-healing EPDM/lonomer thermoplastic vulcanizates by ionic cross-links for automotive application[J]. Polymers, 2022, 14(6): 1156. doi: 10.3390/polym14061156
    [3] 杜颖. 三元乙丙橡胶的生产技术现状及发展前景[J]. 石化技术, 2002, 9(2): 111-114.

    DU Ying. The present status and development prospect of EPDM[J]. Petrochemical Industry Technology, 2002, 9(2): 111-114(in Chinese).
    [4] ZHANG T, ASARO L, GRATTON M, et al. An overview on waste rubber recycling by microwave devulcanization[J]. Journal of Environmental Management, 2024, 353: 120122. doi: 10.1016/j.jenvman.2024.120122
    [5] 姜敏, 寇志敏, 彭少贤. 废旧橡胶回收与利用的研究进展[J]. 合成橡胶工业, 2013, 36(3): 239-243.

    JIANG Min, KOU Zhimin, PENG Shaoxian. Research progress in recycling of waste rubber[J]. China Synthetic Rubber Industry, 2013, 36(3): 239-243(in Chinese).
    [6] ZHENG S J, LIAO M C, CHEN Y, et al. Dissolving used rubber tires[J]. Green Chemistry, 2020, 22(1): 94-102. doi: 10.1039/C9GC03545A
    [7] 张刚刚, 冯皓然, 宋维晓, 等. 橡胶绿色交联策略研究进展——应对硫化污染问题及废橡胶的高值回收[J]. 高分子材料科学与工程, 2021, 37(1): 267-276.

    ZHANG Ganggang, FENG Haoran, SONG Weixiao, et al. Progress on green cross-linking strategies of rubber: coping with vulcanization pollution and high-value recovery of waste rubber[J]. Polymer Materials Science & Engineering, 2021, 37(1): 267-276(in Chinese).
    [8] 肖扬可, 常印龙, 李平, 等. 动态化学交联聚烯烃类弹性体研究进展[J]. 化工学报, 2024, 75(4): 1394-1413.

    XIAO Yangke, CHANG Yinlong, LI Ping, et al. Review on polyolefin-based elastomers with dynamic-chemistry cross-linking[J]. CIESC Journal, 2024, 75(4): 1394-1413(in Chinese).
    [9] LOW D Y S, SUPRAMANIAM J, LEONG W D, et al. Self-healing synthetic rubber composites: review of recent progress and future directions towards sustainability[J]. Materials Today Sustainability, 2023, 24: 100545. doi: 10.1016/j.mtsust.2023.100545
    [10] KONG L M, WU R, ZHANG J Q, et al. High performance, self-adhesive and recyclable dynamic crosslinked waste rubber particle blends toward upcycling of waste rubber[J]. Green Chemistry, 2024, 26(3): 1523-1532. doi: 10.1039/D3GC03440B
    [11] WU P, LIU L, WU Z J. SeSynthesis of Diels-Alder reaction-based remendable epoxy matrix and corresponding self-healing efficiency to fibrous composites[J]. Macromolecular Materials and Engineering, 2020, 305(10): 2000359. doi: 10.1002/mame.202000359
    [12] HU J, MO R B, SHENG X X, et al. A self-healing Polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds[J]. Polymer Chemistry, 2020, 11(14): 2585-2594. doi: 10.1039/D0PY00151A
    [13] PENG T, HUANG J R, GONG Z, et al. Self-healing of reversibly cross-linked thermoplastic vulcanizates[J]. Materials Chemistry and Physics, 2020, 292: 126804.
    [14] DAHLKE J, ZECHEL S, HAGER M D, et al. How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials[J]. Advanced Materials Interfaces, 2018, 5(17): 1800051. doi: 10.1002/admi.201800051
    [15] 张志菲, 赵树高, 杨琨. 本征型自修复弹性体的研究进展[J]. 高校化学工程学报, 2018, 32(4): 758-766. doi: 10.3969/j.issn.1003-9015.2018.04.003

    ZHANG Zhifei, ZHAO Shugao, YANG Kun. Research progress on intrinsic self-healing elastomer[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 758-766(in Chinese). doi: 10.3969/j.issn.1003-9015.2018.04.003
    [16] WANG A, NIU H, HE Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers[J]. Polymer Chemistry, 2017, 8(31): 4494-4502. doi: 10.1039/C7PY00896A
    [17] TANASI P, SANTANA M H, CARRETERO-GONZALEZ, et, al. Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers[J]. Polymer, 2019, 175: 15-24. doi: 10.1016/j.polymer.2019.04.059
    [18] MANDAL S, DAS A, EUCHLER E, et al. Dynamic reversible networks and development of self-healing rubbers: a critical review[J]. Rubber Chemistry and Technology, 2023, 96(2): 175-195. doi: 10.5254/rct.23.76967
    [19] SANI N F M, YEE H J, OTHMAN N, et al. Intrinsic self-healing rubber: A review and perspective of material and reinforcement[J]. Polymer Testing, 2022, 111: 107598. doi: 10.1016/j.polymertesting.2022.107598
    [20] OH C R, LEE S H, PARK J H, et al. Thermally self-healing graphene-nanoplate/Polyurethane nanocomposites via Diels-Alder reaction through a one-shot process. 2019, 9(3): 434.
    [21] DHANARAJU G, BEN B S, PITTALA R K. Thermally remendable bismalemide-MWCNT/DA-epoxy nanocomposite via Diels-Alder bonding[J]. Polymer, 2022, 245: 124734. doi: 10.1016/j.polymer.2022.124734
    [22] KAZEMI H, MIGHRI F, RODRIGUE D. A review of rubber biocomposites reinforced with lignocellulosic fillers[J]. Journal of Composites Science, 2022, 6(7): 183. doi: 10.3390/jcs6070183
    [23] MEISEL K, RöVER L, MAJER S, et al. A comparison of functional fillers-greenhouse gas emissions and air pollutants from lignin-based filler, carbon black and silica[J]. Sustainability, 2022, 14(9): 5393. doi: 10.3390/su14095393
    [24] AINI N A M, OTHMAN N, HUSSIN M H, et al. Lignin as alternative reinforcing filler in the rubber industry: a review[J]. Frontiers in Materials, 2020, 6: 329. doi: 10.3389/fmats.2019.00329
    [25] ROY K, DEBNATH S C, POTIYARAJ P. A review on recent trends and future prospects of lignin based green rubber composites[J]. Journal of Polymers and the Environment, 2020, 28(2): 367-387. doi: 10.1007/s10924-019-01626-5
    [26] SONG X X, TANG S, CHI X, et al. Valorization of lignin from biorefinery: Colloidal lignin micro-Nanospheres as multifunctional bio-based fillers for waterborne wood coating enhancement[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11655-11665.
    [27] 杨军, 王迪珍, 罗东山. 木质素增强橡胶的技术进展[J]. 合成橡胶工业, 2001, (1): 51-55.

    YANG Jun, WANG Dizhen, LUO Dongshan. Technological advances in lignin reinforced rubber[J]. China Synthetic Rubber Industry, 2001, (1): 51-55(in Chinese).
    [28] 吴雨纯, 袁璐璐, 常广谦, 等. 木质素/PBAT复合材料的性能提升与应用研究进展[J]. 中国造纸, 2024, 43(4): 10-24. doi: 10.11980/j.issn.0254-508X.2024.04.002

    WU Yuchun, YUAN Lulu, CHENG Guangqian, et al. Progress in the Performance Improvement and Applications of Lignin/PBAT Composites[J]. China Pulp & Paper, 2024, 43(4): 10-24(in Chinese). doi: 10.11980/j.issn.0254-508X.2024.04.002
    [29] 孙楠, 邸明伟. 木质素在聚合物材料中应用的研究进展[J]. 高分子材料科学与工程, 2021, 37(5): 141-148.

    SUN Nan, DI Mingwei. Progress in the application of lignin in polymer materials[J]. Polymer Materials Science & Engineering, 2021, 37(5): 141-148(in Chinese).
    [30] SHOREY R, GUPTA A, MEKONNEN T H. Hydrophobic modification of lignin for rubber composites[J]. Industrial Crops and Products, 2021, 174: 114189. doi: 10.1016/j.indcrop.2021.114189
    [31] SEKAR P, NOORDERMEER J W M, ANYSZKA R, et al. Hydrothermally treated lignin as a sustainable biobased filler for rubber compounds[J]. ACS Applied Polymer Materials, 2023, 5(4): 2501-2512. doi: 10.1021/acsapm.2c02170
    [32] GOUSSÉ C, GANDINI A, HODGE P. Application of the Diels-Alder reaction to polymers bearing furan moieties. 2. Diels-Alder and Retro-Diels-Alder reactions involving furan rings in some styrene copolymers[J]. Macromolecules, 1998, 31(2): 314-321. doi: 10.1021/ma9710141
    [33] 谢诗琪, 牛慧. 基于Diels-Alder反应的聚丙烯可逆交联改性[J]. 石油化工, 2021, 50(6): 547-553. doi: 10.3969/j.issn.1000-8144.2021.06.007

    XIE Shiqi, NIU Hui. Reversible cross-linking modification of polypropylene based on Diels-Alder reaction[J]. Petrochemical Technology, 2021, 50(6): 547-553(in Chinese). doi: 10.3969/j.issn.1000-8144.2021.06.007
    [34] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T528-2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T528-2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [35] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法: GB/T531.1-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of indentation hardness: GB/T531.1-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [36] CAO L M, FAN J F, HUANG J R, et al. A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds[J]. Journal of Materials Chemistry A, 2019, 7(9): 4922-4933. doi: 10.1039/C8TA11587G
    [37] SARKAR S, BANERJEE S L, SINGHA N K. Dual-responsive self-healable carboxylated acrylonitrile butadiene rubber based on dynamic Diels-Alder "click chemistry" and disulfide metathesis reaction[J]. Macromolecular Materials and Engineering, 2021, 306(3): 2000626. doi: 10.1002/mame.202000626
    [38] MARREF M, MIGNARD N, JEGAT C, et al. Epoxy-amine based thermoresponsive networks designed by Diels-Alder reactions[J]. Polymer International, 2013, 62(1): 87-98. doi: 10.1002/pi.4287
    [39] TAO Y H, ZHOU S Y, LUO Q, et al. Replacing phenol and formaldehyde for green adhesive synthesis by lignin and furfural[J]. ACS Applied Polymer Materials, 2024, 6(12): 6897-6905. doi: 10.1021/acsapm.3c03087
    [40] REN H, ZHU L L. Comparison of the structural characterization of lignophenols and alkaline lignins before and after methylolation[J]. Wood Science and Technology, 2018, 52(4): 1133-1151. doi: 10.1007/s00226-018-1010-5
    [41] 曾宪奎. 木质素羟乙基化改性及性质研究 [D]. 贵州: 贵州大学, 2021.

    ZENG Jiankui. Study on Modification and Properties of Lignin Hydroxyethylation [D]. Guizhou: Guizhou University, 2021(in Chinese).
    [42] DU J H, WANG H, HUANG Z Y, et al. Construction and mechanism study of lignin-based polyurethane with high strength and high self-healing properties[J]. International Journal of Biological Macromolecules, 2023, 248: 125925 doi: 10.1016/j.ijbiomac.2023.125925
    [43] ZHANG Y F, LI N, CHEN Z K, et al. Synthesis of high-water-resistance lignin-phenol resin adhesive with furfural as a crosslinking agent[J]. Polymers, 2020, 12(12): 2805. doi: 10.3390/polym12122805
    [44] LIU S, LIU X, HE Z, et al. Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry: The cross-linking reaction kinetics[J]. Polymer Chemistry, 2020, 11(36): 5851-5860. doi: 10.1039/D0PY01046D
    [45] SAHU P, BHOWMICK A K. Sustainable self-healing elastomers with thermoreversible network derived from biomass via emulsion polymerization[J]. Journal of Polymer Science Part A-polymer Chemistry, 2019, 57(6): 738-751. doi: 10.1002/pola.29320
    [46] ZHANG X F, ZHANG S K, LIU W, et al. Thermally switchable polymers: From thermo-reversibly self-healing hybrid polymers to irreversibly crosslinked flame-retardant networks[J]. Chemical Engineering Journal, 2021, 411: 128467. doi: 10.1016/j.cej.2021.128467
    [47] FENG L B, ZHAO H W, HE X, et al. Synthesis and self-healing behavior of thermoreversible epoxy resins modified with nitrile butadiene rubber[J]. Polymer Engineering and Science, 2019, 59(8): 1603-1610. doi: 10.1002/pen.25158
    [48] PAN J P, SHIAU G Y, LIN S S, et al. Effect of barbituric acid on the self-polymerization reaction of bismaleimides[J]. Journal of applied polymer science, 1992, 45(1): 103-109. doi: 10.1002/app.1992.070450112
    [49] ZHU T T, YU Q, DING L, et al. Atom-economical preparation of polybismaleimide-based microporous organic polymers[J]. Green Chemistry, 2019, 21(9): 2326-2333. doi: 10.1039/C8GC03891K
    [50] MCREYNOLDS B T, MOJTABAI K D, PENNERS N, et al. Understanding the effect of side reactions on the recyclability of furan-maleimide resins based on thermoreversible Diels-Alder network[J]. Polymers, 2023, 15(5): 1106. doi: 10.3390/polym15051106
    [51] 张伦亮, 万里鹰, 黄军同, 等. 基于Diels-Alder动态共价键的含PEGDE片段自修复环氧树脂性能研究[J]. 化工学报, 2020, 71(6): 2871-2879.

    ZHANG Lunliang, WAN Liying, HUANG Juntong, et al. Properties of self-healing epoxy resin containing PEGDE segments based on Diels-Alder dynamic covalent bond[J]. CIESC Journal, 2020, 71(6): 2871-2879(in Chinese).
    [52] ROELS E, TERRYN S, BRANCART J, et al. Additive manufacturing for self-healing soft robots[J]. 2020, Soft Robotics, 7(6): 711-723.
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-07-17
  • 录用日期:  2024-07-26
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回