Preparation and properties of Diels-Alder reactive thermal-heating lignin/EPDM rubber
-
摘要: 为改善橡胶材料废弃后的环境污染问题,以糠醛改性木质素(F-Lig)为填料,采用固相共混法制备了Diels-Alder型热修复三元乙丙橡胶(CEF-Lig)。通过可逆交联网络的断裂和重建赋予了CEF-Lig复合材料高温熔融加工、低温交联成型的特性,并探究了F-Lig含量对CEF-Lig材料的微观结构、力学性能和热修复性能的影响。结果表明:成功制备出具有热修复可回收特性的CEF-Lig复合材料;随F-Lig含量增加,拉伸强度呈现先增加后下降的趋势,CEF-Lig7的拉伸强度达到最大值4.6 MPa,为不含F-Lig对照组(CEPDM)的4.6倍;F-Lig的加入提高了CEF-Lig材料的热分解温度,CEF-Lig9最大分解速率对应的温度(Tmax)相比CEPDM提升8.8 ℃;CEF-Lig材料具有良好的热修复能力,力学强度的一次修复效率均在70%以上,二次修复效率均在60%以上。此外,采用固相共混法工艺,有效避免了溶剂污染,提高了生产效率,为其他可逆交联聚合物的制备提供参考。
-
关键词:
- 木质素 /
- 三元乙丙橡胶 /
- 复合材料 /
- Diels-Alder反应 /
- 力学强度
Abstract: In order to improve the environmental pollution of rubber materials after disposal, Diels-Alder reactive thermal-heating EPDM rubber (CEF-Lig) was prepared using furfural-modified lignin (F-Lig) as a filler in the solid phase blending method. The high-temperature melt processing and low-temperature cross-linking molding of CEF-Lig composites were endowed by the fracture and reconstruction of reversible cross-linking networks, and the effects of F-Lig content on the microstructure, mechanical properties, and thermal repair properties of CEF-Lig materials were explored. The results demonstrate that the CEF-Lig composites with thermally repairable recyclable properties are successfully prepared. With the increase of F-Lig content, the tensile strength shows the trend of increasing and then decreasing, and the tensile strength of CEF-Lig7 reaches the maximum value of 4.6 MPa, which is 4.6 times of that of the control group (CEPDM) without F-Lig. The F-Lig increases the thermal decomposition temperature of the CEF-Lig, and the temperature corresponding to the maximum decomposition rate (Tmax) of CEF-Lig9 was increased by 8.8 ℃ compared to CEPDM. The CEF-Lig has a good thermal repair ability, the mechanical strength of the primary repair efficiency are more than 70%, and the secondary repair efficiency are more than 60%. In addition, the solid phase blending method is adopted to effectively avoid solvent contamination and improve the production efficiency, which provides a reference for the preparation of other reversible cross-linked polymers.-
Key words:
- Lignin /
- EPDM /
- Composite materia /
- Diels-Alder reaction /
- Mechanical strength
-
表 1 CEPDM和不同F-Lig用量CEF-Lig的配方组成(质量份/phr)
Table 1. Formulation composition of CEPDM and CEF-Lig with different F-Lig dosages (mass parts/phr)
Samples EPDM SEF F-Lig BMI DCP CEPDM 100 6.5 0 10 0.2 CEF-Lig1 100 6.5 4 10 0.2 CEF-Lig3 100 6.5 12 10 0.2 CEF-Lig5 100 6.5 20 10 0.2 CEF-Lig7 100 6.5 28 10 0.2 CEF-Lig9 100 6.5 36 10 0.2 Notes: EPDM—Ethylene-propylene-diene monomer; SEF—Styrene-based furan monomer; F-Lig—Furan-modified lignin; BMI—1,1'-(Methylenedi-4,1-phenylene)bismaleimide; DCP—Dicumyl peroxide. 表 2 CEPDM和不同F-Lig用量CEF-Lig的应力应变数据
Table 2. Stress-strain data of CEPDM and CEF-Lig with different F-Lig dosage
Samples Tensile strength/MPa Ultimate elongation/% CEPDM 1.0±0.1 312.3±5.3 CEF-Lig1 2.5±0.3 349.4±6.1 CEF-Lig3 3.1±0.3 278.9±5.5 CEF-Lig5 3.8±0.2 238.8±7.4 CEF-Lig7 4.5±0.1 192.3±4.5 CEF-Lig9 4.4±0.1 147.2±3.2 -
[1] ZHANG G G, ZHOU X X, LIANG K, et al. Mechanically robust and recyclable EPDM rubber composites by a green cross-linking strategy[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11712-11720. [2] JIN W S, SAHU P, PARK S M, et al. Design of self-healing EPDM/lonomer thermoplastic vulcanizates by ionic cross-links for automotive application[J]. Polymers, 2022, 14(6): 1156. doi: 10.3390/polym14061156 [3] 杜颖. 三元乙丙橡胶的生产技术现状及发展前景[J]. 石化技术, 2002, 9(2): 111-114.DU Ying. The present status and development prospect of EPDM[J]. Petrochemical Industry Technology, 2002, 9(2): 111-114(in Chinese). [4] ZHANG T, ASARO L, GRATTON M, et al. An overview on waste rubber recycling by microwave devulcanization[J]. Journal of Environmental Management, 2024, 353: 120122. doi: 10.1016/j.jenvman.2024.120122 [5] 姜敏, 寇志敏, 彭少贤. 废旧橡胶回收与利用的研究进展[J]. 合成橡胶工业, 2013, 36(3): 239-243.JIANG Min, KOU Zhimin, PENG Shaoxian. Research progress in recycling of waste rubber[J]. China Synthetic Rubber Industry, 2013, 36(3): 239-243(in Chinese). [6] ZHENG S J, LIAO M C, CHEN Y, et al. Dissolving used rubber tires[J]. Green Chemistry, 2020, 22(1): 94-102. doi: 10.1039/C9GC03545A [7] 张刚刚, 冯皓然, 宋维晓, 等. 橡胶绿色交联策略研究进展——应对硫化污染问题及废橡胶的高值回收[J]. 高分子材料科学与工程, 2021, 37(1): 267-276.ZHANG Ganggang, FENG Haoran, SONG Weixiao, et al. Progress on green cross-linking strategies of rubber: coping with vulcanization pollution and high-value recovery of waste rubber[J]. Polymer Materials Science & Engineering, 2021, 37(1): 267-276(in Chinese). [8] 肖扬可, 常印龙, 李平, 等. 动态化学交联聚烯烃类弹性体研究进展[J]. 化工学报, 2024, 75(4): 1394-1413.XIAO Yangke, CHANG Yinlong, LI Ping, et al. Review on polyolefin-based elastomers with dynamic-chemistry cross-linking[J]. CIESC Journal, 2024, 75(4): 1394-1413(in Chinese). [9] LOW D Y S, SUPRAMANIAM J, LEONG W D, et al. Self-healing synthetic rubber composites: review of recent progress and future directions towards sustainability[J]. Materials Today Sustainability, 2023, 24: 100545. doi: 10.1016/j.mtsust.2023.100545 [10] KONG L M, WU R, ZHANG J Q, et al. High performance, self-adhesive and recyclable dynamic crosslinked waste rubber particle blends toward upcycling of waste rubber[J]. Green Chemistry, 2024, 26(3): 1523-1532. doi: 10.1039/D3GC03440B [11] WU P, LIU L, WU Z J. SeSynthesis of Diels-Alder reaction-based remendable epoxy matrix and corresponding self-healing efficiency to fibrous composites[J]. Macromolecular Materials and Engineering, 2020, 305(10): 2000359. doi: 10.1002/mame.202000359 [12] HU J, MO R B, SHENG X X, et al. A self-healing Polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds[J]. Polymer Chemistry, 2020, 11(14): 2585-2594. doi: 10.1039/D0PY00151A [13] PENG T, HUANG J R, GONG Z, et al. Self-healing of reversibly cross-linked thermoplastic vulcanizates[J]. Materials Chemistry and Physics, 2020, 292: 126804. [14] DAHLKE J, ZECHEL S, HAGER M D, et al. How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials[J]. Advanced Materials Interfaces, 2018, 5(17): 1800051. doi: 10.1002/admi.201800051 [15] 张志菲, 赵树高, 杨琨. 本征型自修复弹性体的研究进展[J]. 高校化学工程学报, 2018, 32(4): 758-766. doi: 10.3969/j.issn.1003-9015.2018.04.003ZHANG Zhifei, ZHAO Shugao, YANG Kun. Research progress on intrinsic self-healing elastomer[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 758-766(in Chinese). doi: 10.3969/j.issn.1003-9015.2018.04.003 [16] WANG A, NIU H, HE Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers[J]. Polymer Chemistry, 2017, 8(31): 4494-4502. doi: 10.1039/C7PY00896A [17] TANASI P, SANTANA M H, CARRETERO-GONZALEZ, et, al. Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers[J]. Polymer, 2019, 175: 15-24. doi: 10.1016/j.polymer.2019.04.059 [18] MANDAL S, DAS A, EUCHLER E, et al. Dynamic reversible networks and development of self-healing rubbers: a critical review[J]. Rubber Chemistry and Technology, 2023, 96(2): 175-195. doi: 10.5254/rct.23.76967 [19] SANI N F M, YEE H J, OTHMAN N, et al. Intrinsic self-healing rubber: A review and perspective of material and reinforcement[J]. Polymer Testing, 2022, 111: 107598. doi: 10.1016/j.polymertesting.2022.107598 [20] OH C R, LEE S H, PARK J H, et al. Thermally self-healing graphene-nanoplate/Polyurethane nanocomposites via Diels-Alder reaction through a one-shot process. 2019, 9(3): 434. [21] DHANARAJU G, BEN B S, PITTALA R K. Thermally remendable bismalemide-MWCNT/DA-epoxy nanocomposite via Diels-Alder bonding[J]. Polymer, 2022, 245: 124734. doi: 10.1016/j.polymer.2022.124734 [22] KAZEMI H, MIGHRI F, RODRIGUE D. A review of rubber biocomposites reinforced with lignocellulosic fillers[J]. Journal of Composites Science, 2022, 6(7): 183. doi: 10.3390/jcs6070183 [23] MEISEL K, RöVER L, MAJER S, et al. A comparison of functional fillers-greenhouse gas emissions and air pollutants from lignin-based filler, carbon black and silica[J]. Sustainability, 2022, 14(9): 5393. doi: 10.3390/su14095393 [24] AINI N A M, OTHMAN N, HUSSIN M H, et al. Lignin as alternative reinforcing filler in the rubber industry: a review[J]. Frontiers in Materials, 2020, 6: 329. doi: 10.3389/fmats.2019.00329 [25] ROY K, DEBNATH S C, POTIYARAJ P. A review on recent trends and future prospects of lignin based green rubber composites[J]. Journal of Polymers and the Environment, 2020, 28(2): 367-387. doi: 10.1007/s10924-019-01626-5 [26] SONG X X, TANG S, CHI X, et al. Valorization of lignin from biorefinery: Colloidal lignin micro-Nanospheres as multifunctional bio-based fillers for waterborne wood coating enhancement[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11655-11665. [27] 杨军, 王迪珍, 罗东山. 木质素增强橡胶的技术进展[J]. 合成橡胶工业, 2001, (1): 51-55.YANG Jun, WANG Dizhen, LUO Dongshan. Technological advances in lignin reinforced rubber[J]. China Synthetic Rubber Industry, 2001, (1): 51-55(in Chinese). [28] 吴雨纯, 袁璐璐, 常广谦, 等. 木质素/PBAT复合材料的性能提升与应用研究进展[J]. 中国造纸, 2024, 43(4): 10-24. doi: 10.11980/j.issn.0254-508X.2024.04.002WU Yuchun, YUAN Lulu, CHENG Guangqian, et al. Progress in the Performance Improvement and Applications of Lignin/PBAT Composites[J]. China Pulp & Paper, 2024, 43(4): 10-24(in Chinese). doi: 10.11980/j.issn.0254-508X.2024.04.002 [29] 孙楠, 邸明伟. 木质素在聚合物材料中应用的研究进展[J]. 高分子材料科学与工程, 2021, 37(5): 141-148.SUN Nan, DI Mingwei. Progress in the application of lignin in polymer materials[J]. Polymer Materials Science & Engineering, 2021, 37(5): 141-148(in Chinese). [30] SHOREY R, GUPTA A, MEKONNEN T H. Hydrophobic modification of lignin for rubber composites[J]. Industrial Crops and Products, 2021, 174: 114189. doi: 10.1016/j.indcrop.2021.114189 [31] SEKAR P, NOORDERMEER J W M, ANYSZKA R, et al. Hydrothermally treated lignin as a sustainable biobased filler for rubber compounds[J]. ACS Applied Polymer Materials, 2023, 5(4): 2501-2512. doi: 10.1021/acsapm.2c02170 [32] GOUSSÉ C, GANDINI A, HODGE P. Application of the Diels-Alder reaction to polymers bearing furan moieties. 2. Diels-Alder and Retro-Diels-Alder reactions involving furan rings in some styrene copolymers[J]. Macromolecules, 1998, 31(2): 314-321. doi: 10.1021/ma9710141 [33] 谢诗琪, 牛慧. 基于Diels-Alder反应的聚丙烯可逆交联改性[J]. 石油化工, 2021, 50(6): 547-553. doi: 10.3969/j.issn.1000-8144.2021.06.007XIE Shiqi, NIU Hui. Reversible cross-linking modification of polypropylene based on Diels-Alder reaction[J]. Petrochemical Technology, 2021, 50(6): 547-553(in Chinese). doi: 10.3969/j.issn.1000-8144.2021.06.007 [34] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T528-2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T528-2009[S]. Beijing: China Standards Press, 2009(in Chinese). [35] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法: GB/T531.1-2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of indentation hardness: GB/T531.1-2008[S]. Beijing: China Standards Press, 2008(in Chinese). [36] CAO L M, FAN J F, HUANG J R, et al. A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds[J]. Journal of Materials Chemistry A, 2019, 7(9): 4922-4933. doi: 10.1039/C8TA11587G [37] SARKAR S, BANERJEE S L, SINGHA N K. Dual-responsive self-healable carboxylated acrylonitrile butadiene rubber based on dynamic Diels-Alder "click chemistry" and disulfide metathesis reaction[J]. Macromolecular Materials and Engineering, 2021, 306(3): 2000626. doi: 10.1002/mame.202000626 [38] MARREF M, MIGNARD N, JEGAT C, et al. Epoxy-amine based thermoresponsive networks designed by Diels-Alder reactions[J]. Polymer International, 2013, 62(1): 87-98. doi: 10.1002/pi.4287 [39] TAO Y H, ZHOU S Y, LUO Q, et al. Replacing phenol and formaldehyde for green adhesive synthesis by lignin and furfural[J]. ACS Applied Polymer Materials, 2024, 6(12): 6897-6905. doi: 10.1021/acsapm.3c03087 [40] REN H, ZHU L L. Comparison of the structural characterization of lignophenols and alkaline lignins before and after methylolation[J]. Wood Science and Technology, 2018, 52(4): 1133-1151. doi: 10.1007/s00226-018-1010-5 [41] 曾宪奎. 木质素羟乙基化改性及性质研究 [D]. 贵州: 贵州大学, 2021.ZENG Jiankui. Study on Modification and Properties of Lignin Hydroxyethylation [D]. Guizhou: Guizhou University, 2021(in Chinese). [42] DU J H, WANG H, HUANG Z Y, et al. Construction and mechanism study of lignin-based polyurethane with high strength and high self-healing properties[J]. International Journal of Biological Macromolecules, 2023, 248: 125925 doi: 10.1016/j.ijbiomac.2023.125925 [43] ZHANG Y F, LI N, CHEN Z K, et al. Synthesis of high-water-resistance lignin-phenol resin adhesive with furfural as a crosslinking agent[J]. Polymers, 2020, 12(12): 2805. doi: 10.3390/polym12122805 [44] LIU S, LIU X, HE Z, et al. Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry: The cross-linking reaction kinetics[J]. Polymer Chemistry, 2020, 11(36): 5851-5860. doi: 10.1039/D0PY01046D [45] SAHU P, BHOWMICK A K. Sustainable self-healing elastomers with thermoreversible network derived from biomass via emulsion polymerization[J]. Journal of Polymer Science Part A-polymer Chemistry, 2019, 57(6): 738-751. doi: 10.1002/pola.29320 [46] ZHANG X F, ZHANG S K, LIU W, et al. Thermally switchable polymers: From thermo-reversibly self-healing hybrid polymers to irreversibly crosslinked flame-retardant networks[J]. Chemical Engineering Journal, 2021, 411: 128467. doi: 10.1016/j.cej.2021.128467 [47] FENG L B, ZHAO H W, HE X, et al. Synthesis and self-healing behavior of thermoreversible epoxy resins modified with nitrile butadiene rubber[J]. Polymer Engineering and Science, 2019, 59(8): 1603-1610. doi: 10.1002/pen.25158 [48] PAN J P, SHIAU G Y, LIN S S, et al. Effect of barbituric acid on the self-polymerization reaction of bismaleimides[J]. Journal of applied polymer science, 1992, 45(1): 103-109. doi: 10.1002/app.1992.070450112 [49] ZHU T T, YU Q, DING L, et al. Atom-economical preparation of polybismaleimide-based microporous organic polymers[J]. Green Chemistry, 2019, 21(9): 2326-2333. doi: 10.1039/C8GC03891K [50] MCREYNOLDS B T, MOJTABAI K D, PENNERS N, et al. Understanding the effect of side reactions on the recyclability of furan-maleimide resins based on thermoreversible Diels-Alder network[J]. Polymers, 2023, 15(5): 1106. doi: 10.3390/polym15051106 [51] 张伦亮, 万里鹰, 黄军同, 等. 基于Diels-Alder动态共价键的含PEGDE片段自修复环氧树脂性能研究[J]. 化工学报, 2020, 71(6): 2871-2879.ZHANG Lunliang, WAN Liying, HUANG Juntong, et al. Properties of self-healing epoxy resin containing PEGDE segments based on Diels-Alder dynamic covalent bond[J]. CIESC Journal, 2020, 71(6): 2871-2879(in Chinese). [52] ROELS E, TERRYN S, BRANCART J, et al. Additive manufacturing for self-healing soft robots[J]. 2020, Soft Robotics, 7(6): 711-723.
计量
- 文章访问数: 40
- HTML全文浏览量: 18
- 被引次数: 0