留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空金属构件损伤复合材料单面贴补修复力学性能

陈诗展 胡俊山 张霖 田威

陈诗展, 胡俊山, 张霖, 等. 航空金属构件损伤复合材料单面贴补修复力学性能[J]. 复合材料学报, 2023, 40(10): 5903-5916. doi: 10.13801/j.cnki.fhclxb.20221226.003
引用本文: 陈诗展, 胡俊山, 张霖, 等. 航空金属构件损伤复合材料单面贴补修复力学性能[J]. 复合材料学报, 2023, 40(10): 5903-5916. doi: 10.13801/j.cnki.fhclxb.20221226.003
CHEN Shizhan, HU Junshan, ZHANG Lin, et al. Repair performance of damaged aircraft metal structure with one-sided composite patch[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5903-5916. doi: 10.13801/j.cnki.fhclxb.20221226.003
Citation: CHEN Shizhan, HU Junshan, ZHANG Lin, et al. Repair performance of damaged aircraft metal structure with one-sided composite patch[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5903-5916. doi: 10.13801/j.cnki.fhclxb.20221226.003

航空金属构件损伤复合材料单面贴补修复力学性能

doi: 10.13801/j.cnki.fhclxb.20221226.003
基金项目: 国家自然科学基金(52005259);中国博士后科学基金(2022M720939)
详细信息
    通讯作者:

    胡俊山,博士,副教授,硕士生导师,研究方向为飞行器先进装配技术、飞行器金属/复合材料结构修复技术、AR/VR辅助装配技术、智能装配/修复工艺与装备 E-mail: hujunshan@nuaa.edu.cn

  • 中图分类号: TB332

Repair performance of damaged aircraft metal structure with one-sided composite patch

Funds: National Natural Science Foundation of China (52005259); China Postdoctoral Science Foundation (2022M720939)
  • 摘要: 针对航空金属构件损伤碳纤维增强树脂基复合材料(CFRP)单面修补结构,研究了3种贴补修复工艺(湿铺法、预浸料法、预固化法)、复合材料补片厚度、补片长度与修复界面形貌、胶接特性、失效形式和极限载荷之间的对应关系;建立了三维有限元模型,基于三维Hashin失效准则模拟复合材料补片的层内损伤和演化过程,基于内聚力模型模拟胶层和复合材料补片的层间破坏,通过与试验和理论分析对比,验证了该有限元模型的有效性。研究结果表明:3种修补工艺具有不同的界面形貌和失效形式,湿铺法工艺的修复效果最好,是预固化法的3.3倍、预浸料法的1.3倍;随着复合材料补片厚度的增加,修补结构的极限失效载荷先增大后减小,最后趋于稳定,失效形式逐渐从复合材料补片分层崩裂、纤维断裂与胶层损伤的混合失效逐渐演化到胶层的剪切失效,得到修复效果最好的补片厚度为7层约1.05 mm;随着补片长度的增加,修补结构的极限失效载荷先增大后线性减小,胶层的损伤从接头中央和两端起始并往中间区域演化,得到修复效果最好的补片长度为80 mm。该结论为航空维修工程应用提供了良好依据和建议。

     

  • 图  1  金属损伤碳纤维增强树脂(CFRP)复合材料单面贴补修复结构示意图

    Figure  1.  Schematic illustration of one-side repair of damaged metal structure using carbon fiber-reinforced polymer (CFRP)

    tp—Patch thickness; tA—Adhesive thickness; L—Patch length

    图  2  修补试件固化流程

    Figure  2.  Curing process of repair specimen

    图  3  GDW-60型电子万能试验机

    Figure  3.  GDW-60 electronic universal tensile testing machine

    图  4  基于双线性软化的损伤演化过程

    Figure  4.  Bilinear softening based damage evolution process

    σ0—Damage initiation stress; K—Stiffness; d—Damage variable; δ0—Damage initiation displacement; δc—Failure displacement

    图  5  Cohesive单元的双线性本构模型

    Figure  5.  Bilinear constitutive model of cohesive element

    δn 0, δs 0—Normal and tangential crack opening displacement; δf—Final cracking displacement; tn 0, ts 0—Normal and shear strength; δm 0, tm 0, GC—Crack opening displacement, strength and critical strain energy release rate in mixed-mode law

    图  6  单面修复结构的有限元模型

    Figure  6.  Finite element model of one-side repair structure

    Ux, Uy, Uz—Displacement in x, y and z directions, respectively

    图  7  3种修复试件的极限载荷与变异系数(CV)

    Figure  7.  Ultimate load and coefficient of variation (CV) of three methods of repair specimens

    图  8  3种修复试件的失效形式

    Figure  8.  Failure modes of three methods of repair specimens

    图  9  CFRP补片的表面形貌:(a) 观察设备;(b) 预固化法补片;(c) 预浸料法补片;(d) 湿铺法补片

    Figure  9.  Surface morphologies of CFRP patch: (a) Observation equipment; (b) Pre-curing patch; (c) Prepreg lay-up patch; (d) Wet lay-up patch

    图  10  CFRP补片的三维形貌:(a) 观测区域;(b) 预固化法补片;(c) 预浸料法补片;(d) 湿铺法补片

    Figure  10.  Three-dimensional morphologies of CFRP patch: (a) Observation zone; (b) Pre-curing patch; (c) Prepreg lay-up patch; (d) Wet lay-up patch

    图  11  CFPR补片厚度为4层时修补结构的载荷-位移曲线

    Figure  11.  Load-displacement curves of the repair structure with the thickness of CFPR patch of 4 layers

    图  12  不同厚度CFRP补片单面修补结构的极限失效载荷变化曲线

    Figure  12.  Ultimate failure load curves of one-side repair structure with CFRP patches of different thickness

    图  13  A型失效模式:CFRP补片的分层和崩裂

    Figure  13.  A failure mode: CFRP patch delamination and splitting

    SDEG—Damage variable of cohesive elements; SDV1—State variable of fiber damage

    图  14  B型失效模式:CFRP补片分层和胶层剪切的混合失效(补片分层占比较大)

    Figure  14.  B failure mode: Mixed failure of CFRP patch delamination and shear failure of adhesive layer (Patch delamination accounts for a large proportion)

    图  15  C型失效模式:CFRP补片分层和胶层剪切的混合失效(胶层损伤占比较大)

    Figure  15.  C failure mode: Mixed failure of CFRP patch delamination and shear failure of adhesive layer (Shear failure of adhesive layer accounts for a large proportion)

    图  16  D型失效模式:胶层剪切失效

    Figure  16.  D failure mode: Shear failure of adhesive layer

    图  17  不同长度CFRP补片修补结构的极限失效载荷和剪切强度变化曲线

    Figure  17.  Ultimate failure load and shear strength curves of repair structure with CFRP patches of different lengths

    图  18  单面修补结构的受力分析示意图

    Figure  18.  Schematic diagram of stress analysis of one-side repair structure

    Fsh—Shear stress flow; M0—Bending moment; θ0—Included angle

    图  19  补片长度为80 mm的单面修补结构胶层法向应力S33

    Figure  19.  Normal stress S33 of adhesive layer for one-side repair structure with 80 mm patch length

    μ—Displacement at loading point

    图  20  CFRP补片轴向的应变场分布

    Figure  20.  Axial strain field distribution of CFRP patch

    eyy—Strain field in y direction

    表  1  TC4钛合金板的材料参数

    Table  1.   Material parameters of TC4 titanium alloy plate

    ParameterValue
    E/GPa110
    ρ/(kg·m−3)4.51×103
    v120.34
    Note: E, ρ and v12—Elastic modulus, density and Poisson's ratio, respectively.
    下载: 导出CSV

    表  2  SY-24C胶膜的材料参数

    Table  2.   Material parameters of SY-24C adhesive film

    ParameterValue
    E/MPa 5750
    G/MPa 1920
    σ/MPa 451.6
    τ/MPa 225.8
    GC,n/(N·mm−1) 0.48
    GC,s, GC,t/(N·mm−1) 0.64
    Notes: E, G—Elastic modulus in tension and shear; σ, τ—Failure strengths in tension and shear; GC,n—Toughness in tension; GC,s, GC,t—Toughness in shear.
    下载: 导出CSV

    表  3  T300/7901碳纤维增强树脂(CFRP)复合材料层合板的材料参数

    Table  3.   Material parameters of T300/7901 carbon fiber reinforced polymer (CFRP) composite laminate

    ParameterValueParameterValue
    E11/GPa 125 Yc/MPa 280
    E22, E33/GPa 11.3 S/MPa 120
    G12, G13/GPa 5.43 Kn/(N·mm−3) 100000
    G23/GPa 3.98 Ks/(N·mm−3) 100000
    v12, v13 0.3 σ/MPa 28.5
    v23 0.42 τ/MPa 35.5
    Xt/MPa 2000 GC,n/(N·mm−1) 0.34
    Xc/MPa 1100 GC,s/(N·mm−1) 0.38
    Yt/MPa 80 GC,t/(N·mm−1) 0.38
    Notes: Eii (i =1, 2, 3)—Young's modulus in the i direction; Gij (i, j=1, 2, 3)—Shear modulus in the i-j plane; vij (i, j=1, 2, 3)—Poisson's ratio in the i-j plane; Xt, Xc, and Yt, Yc—Tensile and compressive strengths in the 1 and 2 directions; S—Shear strength; Kn, Ks—Stiffness components in tension and shear.
    下载: 导出CSV
  • [1] 宣善勇. 复合材料修理飞机金属结构技术的应用进展[J]. 化工新型材料, 2020, 48(11):227-229. doi: 10.19817/j.cnki.issn1006-3536.2020.11.050

    XUAN Shanyong. Process on boned repair of aircraft metallic structure applied by composite[J]. New Chemical Materials,2020,48(11):227-229(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.11.050
    [2] ABUSREA M R, ARAKAWA K. Improvement of an adhesive joint constructed from carbon fiber-reinforced plastic and dry carbon fiber laminates[J]. Composites Part B: Engineering,2016,97:368-373. doi: 10.1016/j.compositesb.2016.05.005
    [3] 邓雅琼, 陈洋, 栗娜, 等. 三维编织复合材料与金属胶接结构的力学性能及优化[J]. 复合材料学报, 2018, 35(10):2760-2767. doi: 10.13801/j.cnki.fhclxb.20171219.001

    DENG Yaqiong, CHEN Yang, LI Na, et al. Mechanical properties and optimization adhesive structure of three-dimensional braided composites and metal[J]. Acta Materiae Compositae Sinica,2018,35(10):2760-2767(in Chinese). doi: 10.13801/j.cnki.fhclxb.20171219.001
    [4] KUMAR P, SHINDE P S, BHOYAR G. Fracture toughness and shear strength of the bonded interface between an aluminium alloy skin and a FRP patch[J]. Journal of the Institution of Engineers (India): Series C,2019,100:779-789. doi: 10.1007/s40032-018-0467-1
    [5] YANG C Q, WANG X L, JIAO Y J, et al. Linear strain sensing performance of continuous high strength carbon fiber reinforced polymer composites[J]. Composites Part B: Engineering,2016,102:86-93. doi: 10.1016/j.compositesb.2016.07.013
    [6] PURIMPAT S, JÉRÔME R, SHAHRAM A. Effect of fiber angle orientation on a laminated composite single-lap adhesive joint[J]. Advanced Composite Materials,2013,22(3):139-149. doi: 10.1080/09243046.2013.782805
    [7] NURPRASETIO I P, BUDIMAN B A, AZIZ M. Evaluation of bonding strength and fracture criterion for aluminum alloy-woven composite adhesive joint based on cohesive zone model[J]. International Journal of Adhesion and Adhesives,2018,85:193-201. doi: 10.1016/j.ijadhadh.2018.06.011
    [8] LIAO L J, SAWA T, HUANG C G. Numerical analysis on load-bearing capacity and damage of double scarf adhesive joints subjected to combined loadings of tension and bending[J]. International Journal of Adhesion and Adhesives,2014,53:65-71. doi: 10.1016/j.ijadhadh.2014.01.010
    [9] CHOUDHURY M R, DEBNATH K. Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites[J]. International Journal of Adhesion and Adhesives,2020,99:102557.
    [10] ZHAO L B, WANG Y N, QIN T L, et al. A new material model for 2D FE analysis of adhesively bonded composite joints[J]. Materials Science,2014,20(4):468-473.
    [11] RIBEIRO T E A, CAMPILHO R D S G, DA SILVA L F M, et al. Damage analysis of composite-aluminium adhesively-bonded single-lap joints[J]. Composite Structures,2016,136:25-33. doi: 10.1016/j.compstruct.2015.09.054
    [12] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131. doi: 10.13801/j.cnki.fhclxb.20190308.001

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP composite laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190308.001
    [13] 苗学周, 李成, 铁瑛, 等. 补片形状和尺寸对复合材料胶接修补的影响[J]. 机械工程学报, 2014, 50(20):63-69. doi: 10.3901/JME.2014.20.063

    MIAO Xuezhou, LI Cheng, TIE Ying, et al. Influence of patch shape and size on adhesively bonded composite repair[J]. Journal of Mechanical Engineering,2014,50(20):63-69(in Chinese). doi: 10.3901/JME.2014.20.063
    [14] 孙运刚, 宣善勇, 贺旺. 复合材料湿法修理含裂纹铝板疲劳特性分析[J]. 化工新型材料, 2021, 49(11):198-201. doi: 10.19817/j.cnki.issn1006-3536.2021.11.041

    SUN Yungang, XUAN Shanyong, HE Wang. Fatigue characteristics analysis of cracked Al plate repaired by composite wet bonding[J]. New Chemical Materials,2021,49(11):198-201(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.11.041
    [15] 王跃, 穆志韬, 刘治国. 复合材料单面修补板裂纹尖端J积分的解析预测模型[J]. 复合材料学报, 2018, 35(2):332-339. doi: 10.13801/j.cnki.fhclxb.20170327.002

    WANG Yue, MU Zhitao, LIU Zhiguo. Analytical model for prediction of J-internal of single-side-patched plates[J]. Acta Materiae Compositae Sinica,2018,35(2):332-339(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170327.002
    [16] SUN L G, LI C, TIE Y, et al. Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives,2019,95:102402. doi: 10.1016/j.ijadhadh.2019.102402
    [17] FIELDEN-STEWART Z, COOPE T, BACHEVA D, et al. Effect of the surface morphology of SLM printed aluminium on the interfacial fracture toughness of metal-composite hybrid joints[J]. International Journal of Adhesion and Adhesives,2021,105:102779. doi: 10.1016/j.ijadhadh.2020.102779
    [18] DUONG C N, YU J. An analytical estimate of thermal effects in a composite bonded repair: Plane stress analysis[J]. International Journal of Solids and Structures,2002,39(4):1003-1014. doi: 10.1016/S0020-7683(01)00239-6
    [19] 刘真航. SY-24中温固化胶接体系[J]. 中国胶粘剂, 2002, 11(1):1-5. doi: 10.3969/j.issn.1004-2849.2002.01.001

    LIU Zhenhang. SY-24 moderate temperature cured adhesive system[J]. China Adhesives,2002,11(1):1-5(in Chinese). doi: 10.3969/j.issn.1004-2849.2002.01.001
    [20] HOU Y L, TIE Y, LI C, et al. Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations[J]. Composites Part B: Engineering,2019,163:669-680. doi: 10.1016/j.compositesb.2018.12.153
    [21] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of tension properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [22] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [23] GUO S J, LI W H. Numerical analysis and experiment of sandwich T-joint structure reinforced by composite fasteners[J]. Composites Part B: Engineering,2020,199:108288. doi: 10.1016/j.compositesb.2020.108288
    [24] PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development[J]. Composites Part A: Applied Science and Manufacturing,2006,37(1):63-73. doi: 10.1016/j.compositesa.2005.04.016
    [25] GUO W, XUE P, YANG J. Nonlinear progressive damage model for composite laminates used for low-velocity impact[J]. Applied Mathematics and Mechanics,2013,34(9):1145-1154. doi: 10.1007/s10483-013-1733-7
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  686
  • HTML全文浏览量:  529
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2022-11-28
  • 录用日期:  2022-12-04
  • 网络出版日期:  2022-12-27
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回