留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MXene/PEDOT:PSS柔性压力传感器的制备及其在唇语识别中的应用

钟山 贾磊 李晓春 张校亮 孟雪娟

钟山, 贾磊, 李晓春, 等. 基于MXene/PEDOT:PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 钟山, 贾磊, 李晓春, 等. 基于MXene/PEDOT:PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT:PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica.
Citation: ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT:PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica.

基于MXene/PEDOT:PSS柔性压力传感器的制备及其在唇语识别中的应用

基金项目: 山西省应用基础研究青年基金(202203021212265);山西省医学重点科研项目(2022XM17)
详细信息
    通讯作者:

    孟雪娟,博士,副教授,硕士生导师,研究方向为柔性电子器件制备与应用, E-mail: mengxuejuan@tyut.edu.cn

  • 中图分类号: TB332

Preparation of flexible pressure sensor based on MXene/PEDOT:PSS and its application in lip language recognition

Funds: Shanxi Provincial Science Foundation for Young Scientists (202203021212265); Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2022XM17)
  • 摘要: 唇语是声带损伤、喉舌损伤及听障患者的一种有效的语言沟通方式。唇语信号由嘴唇和面部肌肉运动而产生,其包含了大量的语音信息。通过柔性压力传感器来捕获肌肉运动可实现唇语信号的提取和识别,为听、说功能障碍患者提供了更加自然、便捷的无障碍交流方式。本研究采用二维材料MXene和高导电聚合物聚(3,4-乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)作为复合材料,以可拉伸的且具有微结构的Ecoflex作为柔性基底,制备了一种压阻式柔性压力传感器。该传感器在0-2.5 kPa压力范围内具有42.31 kPa−1的高灵敏度及快速响应(<150 ms),并且在10000次压缩-释放循环测试中显示出高稳定性。将该柔性压力传感器贴附于嘴角上并捕获唇语的肌肉运动,结合卷积神经网络算法对十二生肖英语单词信号进行训练和测试,平均准确率高达90.18%。该工作增加了唇语识别系统的多样性,为唇语运动信号直接转化为语音或文本奠定了重要基础。

     

  • 图  1  传感器分别在(a)无负载和(b)有负载状态下的示意图;(c)传感器工作机制的等效电路图

    Figure  1.  Schematic of the sensor in the unloaded states (a) as well as under loading (b), respectively; (c) Equivalent circuit diagram of the sensor mechanism

    图  2  基于MXene/PEDOT:PSS压阻式柔性压力传感器的制备流程图

    Figure  2.  Flow chart for the preparation of a piezoresistive flexible pressure sensor based on MXene/PEDOT:PSS

    PEDOT:PSS—Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)

    图  3  (a) Ecoflex微结构基底的SEM图;(b) Ecoflex微结构基底上涂覆MXene/PEDOT:PSS导电材料的SEM图及局部放大图

    Figure  3.  (a) SEM image of Ecoflex microstructured substrate; (b) SEM image of MXene/PEDOT:PSS conductive material coated on Ecoflex microstructured substrates and local enlargement

    图  4  (a) 传感器在不同压力下的应力分布; (b) Ecoflex微结构的接触面积随外部压力变化的模拟图

    Figure  4.  (a) Stress distribution in the sensor when subjected to different pressures; (b) Simulated contact areas of the Ecoflex microstructure variation versus the external pressure

    图  5  (a) 不同旋涂转速下基底薄膜的电阻率; (b) 不同旋涂转速的传感器相对电阻随压力的变化; (c) 1500 r/min制备的传感器灵敏度; (d) 250 μm,180 μm和120 μm砂纸模板制备的压力传感器的相对电阻随压力的变化

    Figure  5.  (a) Resistivity of the substrate film at different spin-coating speeds; (b) Variation of relative resistance versus pressure for sensors with different spin-coating speeds; (c) Sensor sensitivity prepared from 1500 r/min; (d) Variation of relative resistance versus pressure for pressure sensors prepared using 250 μm, 180 μm and 120 μm sandpaper templates

    图  6  (a) 不同MXene/PEDOT:PSS 掺杂比例条件下传感器的相对电阻随压力的变化; (b) MXene/PEDOT:PSS 质量比为2∶1时传感器的灵敏度; (c) 平面结构和微结构传感器的相对电阻随外加压力的变化; (d) MXene, PEDOT:PSS和MXene/PEDOT:PSS 复合材料的拉曼光谱

    Figure  6.  (a) Variation of relative resistance versus pressure of sensors under different ratios of MXene/PEDOT:PSS doping conditions; (b) Sensitivity of the sensor at a MXene/PEDOT:PSS mass ratio of 2∶1; (c) Variation of relative resistance of planar structured and microstructured sensors against applied pressure; (d) Raman spectra of MXene, PEDOT:PSS, and MXene/PEDOT:PSS composites

    图  7  (a) 压力传感器在0.1 kPa和0.2 kPa压力下的响应和恢复时间; (b) 不同压力下传感器相对电阻的变化

    Figure  7.  (a) Response and relaxation time of the pressure sensor under pressures of 0.1 kPa and 0.2 kPa; (b) Variation of relative resistance versus different pressure for sensors

    图  8  (a) 传感器在不同频率压力下的相对电阻随压力的变化; (b)在1.0 kPa的压力下, 加载和卸载重复10000次,相对电阻变化

    Figure  8.  (a) Variation of relative resistance of sensors with pressure at different frequency pressures; (b) Variation of relative resistance after 10,000 repetitions of loading and unloading at a pressure of 1.0 kPa.

    图  9  (a) 以两种不同的速度读出"ai", "pin", "cai", "hui", "ying"的唇语信号; (b) 五位志愿者(Zhong, Xu, Jia, Zhang和Wang)读"ai", "pin","cai", "hui"和"ying"时的唇语信号

    Figure  9.  (a) Lip language signals of "ai", "pin", "cai", "hui", "ying" are read out at two different speeds; (b) Lip language signals of five volunteers (Zhong, Xu, Jia, Zhang and Wang) when pronouncing "ai", "pin", "cai", "hui" and "ying"

    图  10  十二生肖英语单词的唇语信号

    Figure  10.  Lip language signals for English words in the Chinese zodiac

    图  11  (a) 传感器捕捉唇语信号的照片; (b) 卷积神经网络模型结构示意图

    Figure  11.  (a) Photograph of the sensor capturing the lip language signal; (b) Schematic of the structure of the convolutional neural network model

    图  12  (a) 12个英语单词(十二生肖)生成的唇语信号三维图; (b) 12个英语单词(十二生肖)唇语信号的混淆矩阵; 跟踪训练集和测试集唇语识别的(c)准确率和(d)损失率的变化

    Figure  12.  (a) 3 D plot of lip language signals generated for 12 English words (Chinese zodiac) in the dataset; (b) Confusion matrix representing the lip language signals for 12 English words (Zodiac); Tracking variations of training set and test set in lip language recognition’s accuracy (c) and (d) loss rate

    表  1  实验试剂及实验设备

    Table  1.   Laboratory reagents and experimental equipment

    Name of reagents and instruments Norm Manufacturer
    Ecoflex 00-30 Beijing Angelcrete Art Landscaping Co.,Ltd
    PEDOT:PSS PH 1000 Xi'an Qiyue Biotechnology Co.,Ltd.
    MXene 5 mg/mL Jilin 11 Technology Co.,Ltd
    Sandpaper 120/180/250 μm Shinkong Technology Co.,Ltd.
    Drying oven GZX-9070 Shanghai Boxun Co.,Ltd.
    Oxygen plasma PLUTO-T Shanghai Pei Yuan Instrument Co.,Ltd.
    Heating stage HP550-S Dragon laboratory instruments.Co.,Ltd
    Digital source meter Keithley2614 Tektronix USA, Inc.
    Spin coater KW-4 A Shanghai Chemat Advanced Ceramics Technology.Co.,Ltd.
    Universal testing machine CMT6502 Shenzhen suns technology stock.Co.,Ltd
    Scanning electron microscopy(SEM) S-4800 Hitachi.,Ltd
    Raman spectrometer Qontor Renishaw,UK
    下载: 导出CSV
  • [1] LIANG Q, XIA X, SUN X, et al. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals[J]. Advanced Science, 2022, 9(16): 2201059. doi: 10.1002/advs.202201059
    [2] XIE L, ZI X, MENG Q, et al. Detection of Physiological Signals Based on Graphene Using a Simple and Low-Cost Method[J]. Sensors, 2019, 19(7): 1656. doi: 10.3390/s19071656
    [3] LEI Z, WANG Q, SUN S, et al. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing[J]. Advanced Materials, 2017, 29(22): 1700321. doi: 10.1002/adma.201700321
    [4] 罗灵欢, 林祥德, 姜佳怡, 等. 超疏水柔性应变传感器在人体运动监测中的研究进展[J]. 复合材料学报, 2023, 40(7): 3837-3851.

    LUO L, LIN X, JIANG J Y, et al. Research progress of superhydrophobic flexible strain sensors in human motion monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3837-3851(in Chinese)
    [5] FANG X, TAN J, GAO Y, et al. High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection[J]. Nanoscale, 2017, 9(45): 17948-17956. doi: 10.1039/C7NR05903E
    [6] TAO L Q, TIAN H, LIU Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 2017, 8(1): 14579. doi: 10.1038/ncomms14579
    [7] BI P, ZHANG M, LI S, et al. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces[J]. Nano Research, 2023, 16(3): 4093-4099. doi: 10.1007/s12274-022-5162-0
    [8] WANG J, LIU L, YANG C, et al. Ultrasensitive, Highly Stable, and Flexible Strain Sensor Inspired by Nature[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16885-16893.
    [9] WANG Y, TANG T, XU Y, et al. All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics[J]. npj Flexible Electronics, 2021, 5(1): 20. doi: 10.1038/s41528-021-00119-7
    [10] LIU Y, LIANG X, LI H, et al. Ultralight Smart Patch with Reduced Sensing Array Based on Reduced Graphene Oxide for Hand Gesture Recognition[J]. Advanced Intelligent Systems, 2022, 4(11): 2200193. doi: 10.1002/aisy.202200193
    [11] HUANG J, ZENG J, LIANG B, et al. Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16822-16830.
    [12] FENG J, LONG R. Cross-language lipreading by reconstructing Spatio-Temporal relations in 3D convolution[J]. Displays, 2023, 76: 102357. doi: 10.1016/j.displa.2022.102357
    [13] CHENG L, RUAN D, HE Y, et al. A highly stretchable and sensitive strain sensor for lip-reading extraction and speech recognition[J]. Journal of Materials Chemistry C, 2023, 11(25): 8413-8422. doi: 10.1039/D3TC01136D
    [14] LU Y, TIAN H, CHENG J, et al. Decoding lip language using triboelectric sensors with deep learning[J]. Nature Communications, 2022, 13(1): 1401. doi: 10.1038/s41467-022-29083-0
    [15] ASSAEL Y M, SHILLINGFORD B, WHITESON S, et al. LipNet: End-to-End Sentence-level Lipreading[J]. 2016, 1611.01599.
    [16] CHENG L, RUAN D, HE Y, et al. A highly stretchable and sensitive strain sensor for lip-reading extraction and speech recognition[J]. Journal of Materials Chemistry C, 2023, 11(25): 8413-8422. doi: 10.1039/D3TC01136D
    [17] 杨棽尧. 基于深度学习的唇语识别技术及其应用研究[D]. 北京: 北方工业大学, 2021.

    YANG S Y. Lip recognition technology based on deep learning and its application[D]. Beijing: North China University of Technology, 2021(in Chinese).
    [18] GOMEZ DE ARCOL, ZHANG Y, SCHLENKER C W, et al. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics[J]. ACS Nano, 2010, 4(5): 2865-2873. doi: 10.1021/nn901587x
    [19] ZHU M, SHI Q, HE T, et al. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring[J]. ACS Nano, 2019, 13(2): 1940-1952.
    [20] FAN X, NIE W, TSAI H, et al. PEDOT: PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications[J]. Advanced Science, 2019, 6(19): 1900813. doi: 10.1002/advs.201900813
    [21] 梁虎, 张礼兵, 吴婷, 等. 基于醋酸纤维素MXene复合纤维膜的柔性触觉传感器[J]. 复合材料学报, 2023, 40(11): 6228-6240.

    LIANG H, ZHANG L B, WU T, et al. Flexible tactile sensor based on cellulose acetate/MXene composite fiber thin film[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6228-6240(in Chinese).
    [22] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [23] GOU G Y, LI X S, JIAN J M, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum[J]. Science Advances, 2022, 8(13): eabn2156. doi: 10.1126/sciadv.abn2156
    [24] ZHANG Y Z, LEE K H, ANJUM D H, et al. MXenes stretch hydrogel sensor performance to new limits[J]. Science Advances, 2018, 4(6): eaat0098. doi: 10.1126/sciadv.aat0098
    [25] ZHAO L Z, ZHOU C H, WANG J, et al. Recent advances in clay mineral-containing nanocomposite hydrogels[J]. Soft Matter, 2015, 11(48): 9229-9246. doi: 10.1039/C5SM01277E
    [26] ZHANG S, TU T, LI T, et al. 3D MXene/PEDOT: PSS Composite Aerogel with a Controllable Patterning Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23877-23887.
    [27] PAN Y, HE M, WU J, et al. One-step synthesis of MXene-functionalized PEDOT: PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat glucose[J]. Sensors and Actuators B: Chemical, 2024, 401: 135055. doi: 10.1016/j.snb.2023.135055
  • 加载中
计量
  • 文章访问数:  130
  • HTML全文浏览量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-04-11
  • 录用日期:  2024-04-11
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回