Preparation of flexible pressure sensor based on MXene/PEDOT:PSS and its application in lip language recognition
-
摘要: 唇语是声带损伤、喉舌损伤及听障患者的一种有效的语言沟通方式。唇语信号由嘴唇和面部肌肉运动而产生,其包含了大量的语音信息。通过柔性压力传感器来捕获肌肉运动可实现唇语信号的提取和识别,为听、说功能障碍患者提供了更加自然、便捷的无障碍交流方式。本研究采用二维材料MXene和高导电聚合物聚(3,4-乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)作为复合材料,以可拉伸的且具有微结构的Ecoflex作为柔性基底,制备了一种压阻式柔性压力传感器。该传感器在0-2.5 kPa压力范围内具有42.31 kPa−1的高灵敏度及快速响应(<150 ms),并且在10000次压缩-释放循环测试中显示出高稳定性。将该柔性压力传感器贴附于嘴角上并捕获唇语的肌肉运动,结合卷积神经网络算法对十二生肖英语单词信号进行训练和测试,平均准确率高达90.18%。该工作增加了唇语识别系统的多样性,为唇语运动信号直接转化为语音或文本奠定了重要基础。Abstract: Lip language is an effective form of verbal communication for patients with vocal cord injuries, laryngeal and tongue injuries, and hearing loss. Lip-speaking signals are generated by lip and facial muscle movements, which contain a large amount of speech information. The extraction and recognition of lip-speaking signals can be achieved by capturing the muscle movements through flexible pressure sensors, providing a more natural and convenient way of accessible communication for patients with listening and speaking dysfunction. In this study, a piezoresistive flexible pressure sensor was prepared using a two-dimensional material, MXene, and a highly conductive polymer, poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), as composites, and a stretchable and microstructured Ecoflex as a flexible substrate. The piezoresistive sensor demonstrated a high sensitivity of 42.31 kPa−1 and fast response (<150 ms) in the pressure range of 0-2.5 kPa, and shows high stability in 10,000 compression-release cycles. The flexible piezoresistive sensor was attached to the corners of the mouth and captured the muscle movements of the lips, which was combined with a convolutional neural network algorithm to train and test the signals of English words in the Chinese zodiac, with an average accuracy of up to 90.18%. This work increases the versatility of lip recognition systems and lays an important foundation for the direct conversion of lip movement signals into speech or text.
-
图 5 (a) 不同旋涂转速下基底薄膜的电阻率; (b) 不同旋涂转速的传感器相对电阻随压力的变化; (c) 1500 r/min制备的传感器灵敏度; (d) 250 μm,180 μm和120 μm砂纸模板制备的压力传感器的相对电阻随压力的变化
Figure 5. (a) Resistivity of the substrate film at different spin-coating speeds; (b) Variation of relative resistance versus pressure for sensors with different spin-coating speeds; (c) Sensor sensitivity prepared from 1500 r/min; (d) Variation of relative resistance versus pressure for pressure sensors prepared using 250 μm, 180 μm and 120 μm sandpaper templates
图 6 (a) 不同MXene/PEDOT:PSS 掺杂比例条件下传感器的相对电阻随压力的变化; (b) MXene/PEDOT:PSS 质量比为2∶1时传感器的灵敏度; (c) 平面结构和微结构传感器的相对电阻随外加压力的变化; (d) MXene, PEDOT:PSS和MXene/PEDOT:PSS 复合材料的拉曼光谱
Figure 6. (a) Variation of relative resistance versus pressure of sensors under different ratios of MXene/PEDOT:PSS doping conditions; (b) Sensitivity of the sensor at a MXene/PEDOT:PSS mass ratio of 2∶1; (c) Variation of relative resistance of planar structured and microstructured sensors against applied pressure; (d) Raman spectra of MXene, PEDOT:PSS, and MXene/PEDOT:PSS composites
图 9 (a) 以两种不同的速度读出"ai", "pin", "cai", "hui", "ying"的唇语信号; (b) 五位志愿者(Zhong, Xu, Jia, Zhang和Wang)读"ai", "pin","cai", "hui"和"ying"时的唇语信号
Figure 9. (a) Lip language signals of "ai", "pin", "cai", "hui", "ying" are read out at two different speeds; (b) Lip language signals of five volunteers (Zhong, Xu, Jia, Zhang and Wang) when pronouncing "ai", "pin", "cai", "hui" and "ying"
图 12 (a) 12个英语单词(十二生肖)生成的唇语信号三维图; (b) 12个英语单词(十二生肖)唇语信号的混淆矩阵; 跟踪训练集和测试集唇语识别的(c)准确率和(d)损失率的变化
Figure 12. (a) 3 D plot of lip language signals generated for 12 English words (Chinese zodiac) in the dataset; (b) Confusion matrix representing the lip language signals for 12 English words (Zodiac); Tracking variations of training set and test set in lip language recognition’s accuracy (c) and (d) loss rate
表 1 实验试剂及实验设备
Table 1. Laboratory reagents and experimental equipment
Name of reagents and instruments Norm Manufacturer Ecoflex 00-30 Beijing Angelcrete Art Landscaping Co.,Ltd PEDOT:PSS PH 1000 Xi'an Qiyue Biotechnology Co.,Ltd. MXene 5 mg/mL Jilin 11 Technology Co.,Ltd Sandpaper 120/180/250 μm Shinkong Technology Co.,Ltd. Drying oven GZX-9070 Shanghai Boxun Co.,Ltd. Oxygen plasma PLUTO-T Shanghai Pei Yuan Instrument Co.,Ltd. Heating stage HP550-S Dragon laboratory instruments.Co.,Ltd Digital source meter Keithley2614 Tektronix USA, Inc. Spin coater KW-4 A Shanghai Chemat Advanced Ceramics Technology.Co.,Ltd. Universal testing machine CMT6502 Shenzhen suns technology stock.Co.,Ltd Scanning electron microscopy(SEM) S-4800 Hitachi.,Ltd Raman spectrometer Qontor Renishaw,UK -
[1] LIANG Q, XIA X, SUN X, et al. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals[J]. Advanced Science, 2022, 9(16): 2201059. doi: 10.1002/advs.202201059 [2] XIE L, ZI X, MENG Q, et al. Detection of Physiological Signals Based on Graphene Using a Simple and Low-Cost Method[J]. Sensors, 2019, 19(7): 1656. doi: 10.3390/s19071656 [3] LEI Z, WANG Q, SUN S, et al. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing[J]. Advanced Materials, 2017, 29(22): 1700321. doi: 10.1002/adma.201700321 [4] 罗灵欢, 林祥德, 姜佳怡, 等. 超疏水柔性应变传感器在人体运动监测中的研究进展[J]. 复合材料学报, 2023, 40(7): 3837-3851.LUO L, LIN X, JIANG J Y, et al. Research progress of superhydrophobic flexible strain sensors in human motion monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3837-3851(in Chinese) [5] FANG X, TAN J, GAO Y, et al. High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection[J]. Nanoscale, 2017, 9(45): 17948-17956. doi: 10.1039/C7NR05903E [6] TAO L Q, TIAN H, LIU Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 2017, 8(1): 14579. doi: 10.1038/ncomms14579 [7] BI P, ZHANG M, LI S, et al. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces[J]. Nano Research, 2023, 16(3): 4093-4099. doi: 10.1007/s12274-022-5162-0 [8] WANG J, LIU L, YANG C, et al. Ultrasensitive, Highly Stable, and Flexible Strain Sensor Inspired by Nature[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16885-16893. [9] WANG Y, TANG T, XU Y, et al. All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics[J]. npj Flexible Electronics, 2021, 5(1): 20. doi: 10.1038/s41528-021-00119-7 [10] LIU Y, LIANG X, LI H, et al. Ultralight Smart Patch with Reduced Sensing Array Based on Reduced Graphene Oxide for Hand Gesture Recognition[J]. Advanced Intelligent Systems, 2022, 4(11): 2200193. doi: 10.1002/aisy.202200193 [11] HUANG J, ZENG J, LIANG B, et al. Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16822-16830. [12] FENG J, LONG R. Cross-language lipreading by reconstructing Spatio-Temporal relations in 3D convolution[J]. Displays, 2023, 76: 102357. doi: 10.1016/j.displa.2022.102357 [13] CHENG L, RUAN D, HE Y, et al. A highly stretchable and sensitive strain sensor for lip-reading extraction and speech recognition[J]. Journal of Materials Chemistry C, 2023, 11(25): 8413-8422. doi: 10.1039/D3TC01136D [14] LU Y, TIAN H, CHENG J, et al. Decoding lip language using triboelectric sensors with deep learning[J]. Nature Communications, 2022, 13(1): 1401. doi: 10.1038/s41467-022-29083-0 [15] ASSAEL Y M, SHILLINGFORD B, WHITESON S, et al. LipNet: End-to-End Sentence-level Lipreading[J]. 2016, 1611.01599. [16] CHENG L, RUAN D, HE Y, et al. A highly stretchable and sensitive strain sensor for lip-reading extraction and speech recognition[J]. Journal of Materials Chemistry C, 2023, 11(25): 8413-8422. doi: 10.1039/D3TC01136D [17] 杨棽尧. 基于深度学习的唇语识别技术及其应用研究[D]. 北京: 北方工业大学, 2021.YANG S Y. Lip recognition technology based on deep learning and its application[D]. Beijing: North China University of Technology, 2021(in Chinese). [18] GOMEZ DE ARCOL, ZHANG Y, SCHLENKER C W, et al. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics[J]. ACS Nano, 2010, 4(5): 2865-2873. doi: 10.1021/nn901587x [19] ZHU M, SHI Q, HE T, et al. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring[J]. ACS Nano, 2019, 13(2): 1940-1952. [20] FAN X, NIE W, TSAI H, et al. PEDOT: PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications[J]. Advanced Science, 2019, 6(19): 1900813. doi: 10.1002/advs.201900813 [21] 梁虎, 张礼兵, 吴婷, 等. 基于醋酸纤维素MXene复合纤维膜的柔性触觉传感器[J]. 复合材料学报, 2023, 40(11): 6228-6240.LIANG H, ZHANG L B, WU T, et al. Flexible tactile sensor based on cellulose acetate/MXene composite fiber thin film[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6228-6240(in Chinese). [22] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421 [23] GOU G Y, LI X S, JIAN J M, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum[J]. Science Advances, 2022, 8(13): eabn2156. doi: 10.1126/sciadv.abn2156 [24] ZHANG Y Z, LEE K H, ANJUM D H, et al. MXenes stretch hydrogel sensor performance to new limits[J]. Science Advances, 2018, 4(6): eaat0098. doi: 10.1126/sciadv.aat0098 [25] ZHAO L Z, ZHOU C H, WANG J, et al. Recent advances in clay mineral-containing nanocomposite hydrogels[J]. Soft Matter, 2015, 11(48): 9229-9246. doi: 10.1039/C5SM01277E [26] ZHANG S, TU T, LI T, et al. 3D MXene/PEDOT: PSS Composite Aerogel with a Controllable Patterning Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23877-23887. [27] PAN Y, HE M, WU J, et al. One-step synthesis of MXene-functionalized PEDOT: PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat glucose[J]. Sensors and Actuators B: Chemical, 2024, 401: 135055. doi: 10.1016/j.snb.2023.135055
计量
- 文章访问数: 177
- HTML全文浏览量: 108
- 被引次数: 0