留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型变刚度层合板力学特性及损伤机制

曹忠亮 丁潇潇

曹忠亮, 丁潇潇. 新型变刚度层合板力学特性及损伤机制[J]. 复合材料学报, 2024, 41(待排刊): 1-13.
引用本文: 曹忠亮, 丁潇潇. 新型变刚度层合板力学特性及损伤机制[J]. 复合材料学报, 2024, 41(待排刊): 1-13.
CAO Zhongliang, DING Xiaoxiao. Mechanical properties and damage mechanisms of novel variable stiffness laminates[J]. Acta Materiae Compositae Sinica.
Citation: CAO Zhongliang, DING Xiaoxiao. Mechanical properties and damage mechanisms of novel variable stiffness laminates[J]. Acta Materiae Compositae Sinica.

新型变刚度层合板力学特性及损伤机制

基金项目: 江苏省高等学校自然科学研究重大项目(21KJA460004);江苏省重点研发计划技术项目(BE2023014-3)
详细信息
    通讯作者:

    曹忠亮,博士,教授,硕士生导师,研究方向为复合材料夹芯结构、铺放成型工艺等方面 E-mail: caoliang-8302@163.com

  • 中图分类号: TB332

Mechanical properties and damage mechanisms of novel variable stiffness laminates

Funds: Universities Natural Science Research Major Project of Jiangsu Province (21KJA460004); Key Research and Development Project of Jiangsu Province (BE2023014-3)
  • 摘要: 广泛应用于航空航天、交通运输等领域的复合材料层合板在实际应用中存在着承载能力和稳定性方面的挑战,为解决上述问题,采用自动铺丝可变刚度层合板,并对其力学特性及失效机制进行研究。首先,在线性变角度函数的基础上,提出一种新型周期线性延拓函数算法,以优化复合材料纤维铺放路径,实现更为详细和精确的纤维轨迹变化。其次,通过Python/Abaqus联合构建新型变刚度层合板有限元模型。最后,分析了定/变刚度层合板三点弯曲下的损伤机制,揭示了不同纤维铺放角对层合板力学特性、应力分布和损伤情况的影响。研究结果表明:三点工况下中心纤维取向角对弯曲性能产生显著影响,0°有利于性能提升,90°则导致性能下降;在中心纤维取向角T0=5°的基础上,采用变角度设计可以有效抑制弯曲损伤进一步扩展,均匀层合板面内应力分布,同时进一步提高弯曲极限应力,最大提升幅度为28.31%。本研究为后续复合材料层合板的抗弯曲设计和优化提供了重要的研究思路和流程,具有一定参考意义。

     

  • 图  1  复合材料纤维铺放:(a) 纤维自动铺放技术;(b) 纤维铺放参考路径

    Figure  1.  Composite fiber placement: (a) Automatic fiber placement technology; (b) Fiber placement reference path

    图  2  周期线性延拓纤维铺放参考路径示意图

    Figure  2.  Schematic diagram of periodic linear extension fiber laying reference path

    图  3  n=1~4时周期线性延拓纤维铺放参考路径对比图

    Figure  3.  Comparison chart of reference paths for periodic linear extension fiber laying when n=1~4

    图  4  离散化RVE单元示意图[10]

    Figure  4.  Schematic diagram of representative volume units based on discretization ideas[10]

    图  5  1±0<15 |60>4曲线纤维轨迹离散化过程

    Figure  5.  Curved fiber trajectory discretization process of 1±0<15 |60>4

    图  6  新型变刚度层合板二次开发建模流程

    Figure  6.  Secondary development modeling process of new variable stiffness laminates

    图  7  复合材料层合板三点弯曲示意图

    Figure  7.  Schematic diagram of three-point bending of composite laminates

    图  8  复合材料层合板示意图:(a) 层合板微观模型;(b) 层合板铺层宏观示意图

    Figure  8.  Schematic diagram of composite laminates: (a) Composite laminate micro model; (b) Macroscopic diagram of composite laminate layup

    图  9  复合材料层合板三点弯曲仿真模型

    Figure  9.  Three-point bending simulation model of composite laminates

    图  10  不同始末角纤维轨迹对比

    Figure  10.  Comparison of fiber trajectories at different angles

    图  11  两种定刚度层合板三点弯曲工况下载荷-时间曲线:(a) [0°]8铺层;(b) [0°|90°]4铺层

    Figure  11.  Force-time curves of two types of constant-stiffness laminates under three-point bending conditions: (a) The layer is [0°]8; (b) The layer is [0°|90°]4

    图  12  不同始末角角纤维铺层变刚度层合板三点弯曲工况下载荷-位移曲线

    Figure  12.  Force-displacement curve of variable stiffness laminates with different starting and ending angles under three-point bending conditions

    图  13  1±0<5°|50°>4变刚度层合板三点弯曲工况下载荷-时间曲线

    Figure  13.  Force-time curve of 1±0<5°|50°>4 variable stiffness laminate under three-point bending condition

    图  14  复合材料层合板三点弯曲工况下位移云图

    Figure  14.  Displacement cloud diagram of composite laminates under three-point bending conditions

    图  15  复合材料层合板三点弯曲失效分析步时间及底层Cohesive应力对比

    Figure  15.  Comparison of three-point bending failure analysis step time and underlying Cohesive stress of composite laminates

    图  16  应力峰值时刻层合板底层Cohesive应力分布对比

    Figure  16.  Comparison of Cohesive stress distribution in the bottom layer of laminates at the moment of stress peak

    表  1  程序算法有效性验证

    Table  1.   Algorithm validity verification

    Buckling load/kN Error/%
    This article 94.644
    Average experimental result[17] 97.9 3.326
    Average experimental result[18] 98.3 3.719
    下载: 导出CSV

    表  2  层合板材料属性

    Table  2.   Composite laminate material parameters

    Lamina Constants Constitutive Damage Model Parameters of Lamina
    E11/MPa 463 Longitudinal tensile strength/MPa XT 2080
    E22/MPa 700 Longitudinal compressive strength/MPa XC 1250
    E33/MPa 700 Transverse tensile strength/MPa YT 60
    G12/MPa 4800 Transverse compressive strength/MPa YC 140
    G13/MPa 4800 Longitudinal shear strength/MPa SL 60
    G23/MPa 3800 Transverse shear strength/MPa ST 140
    ν12 0.33 Longitudinal tensile fracture energy/(mJ·mm−2) GXT 133
    ν13 0.33 Longitudinal compressive fracture energy/( mJ·mm−2) GXC 40
    ν23 0.3 Transverse tensile fracture energy/(mJ·mm−2) GYT 0.6
    Transverse compressive fracture energy/(mJ·mm−2) GYC 2.1
    Notes: E11, E22, E33 are stiffness; G12, G13, G23 are shear modulus; ν12, ν13, ν23 are Poisson’s ratio; XT, XC are tensile strength; YT, YC are compressive strength; SL, ST is the shear strength; GYT, GYC are the tensile fracture energy.
    下载: 导出CSV

    表  3  层合板铺层方案

    Table  3.   Composite laminate laying methods

    Types of LaminatesLayer representation method
    The constant stiffness[0°]8[0°/90°]4[90°]8
    The variable stiffnessT1 remains unchanged1±0<10°|5°>41±0<20°|5°>41±0<30°|5°>41±0<40°|5°>4
    1±0<50°|5°>41±0<60°|5°>41±0<70°|5°>41±0<80°|5°>4
    T0 remains unchanged1±0<5°|10°>41±0<5°|20°>41±0<5°|30°>41±0<5°|40°>4
    1±0<5°|50°>41±0<5°|60°>41±0<5°|70°>41±0<5°|80°>4
    下载: 导出CSV

    表  4  三点弯曲工况下层合板极限应力对比

    Table  4.   Comparison of ultimate stress of laminates under three-point bending

    Layer Ultimate stress/MPa Compare Layer Ultimate stress/MPa Compare
    [0°]8 1618 [0°/90°]4 1361 ↓ 15.884
    1±0<10°|5°>4 2035 ↑ 25.773 1±0<5°|10°>4 2072 ↑ 28.059
    1±0<20°|5°>4 2076 ↑ 28.307 1±0<5°|20°>4 2073 ↑ 28.121
    1±0<30°|5°>4 2052 ↑ 26.823 1±0<5°|30°>4 2076 ↑ 28.307
    1±0<40°|5°>4 861.5 ↓ 46.755 1±0<5°|40°>4 2076 ↑ 28.307
    1±0<50°|5°>4 1149 ↓ 28.986 1±0<5°|50°>4 2072 ↑ 28.059
    1±0<60°|5°>4 687.9 ↓ 57.485 1±0<5°|60°>4 2055 ↑ 27.009
    1±0<70°|5°>4 493.4 ↓ 69.506 1±0<5°|70°>4 1656 ↑ 2.295
    1±0<80°|5°>4 238.7 ↓ 85.247 1±0<5°|80°>4 2011 ↑ 24.289
    [90°]8 58.48 ↓ 94.174
    下载: 导出CSV
  • [1] 白瑞祥, 佟凯旋, 刘琛. 自动铺丝变刚度加筋板结构承载能力分析[J]. 哈尔滨工程大学学报, 2019, 40(8): 1480-1487. doi: 10.11990/jheu.201807122

    BAI Ruixiang, TONG Kaixuan, LIU Chen. Load capacity analysis of plates stiffened through automated fiber placement with variable stiffness[J]. Journal of Harbin Engineering University, 2019, 40(8): 1480-1487(in Chinese). doi: 10.11990/jheu.201807122
    [2] 陈同海, 周正亮, 张守玉, 等. 夹层复合材料三点弯曲试验和有限元模拟分析对比[J]. 工程塑料应用, 2017, 45(7): 111-114. doi: 10.3969/j.issn.1001-3539.2017.07.022

    CHEN T H, ZHOU Z L, ZHANG S Y, et al. Comparison of three point bending test and finite element simulation analysis of sandwich composites [j][J]. engineering Plastics Application, 2017, 45(7): 111-114(in Chinese). doi: 10.3969/j.issn.1001-3539.2017.07.022
    [3] 张华伟, 吴佳璐. 三点弯曲工况下复合材料层合板的应力变化[J]. 纺织高校基础科学学报, 2020, 33(01): 32-37.

    ZHANG Huawei, wu jialu. stress change of composite laminates in three point bending[J]. Basic Sciences Journal of Textile Universities, 2019, 33 (1): 32-37(in Chinese).
    [4] Ullah H, Harland A R, Lucas T, et al. Finite-element modelling of bending of CFRP laminates: Multiple delaminations[J]. Computational Materials Science, 2012, 52(1): 147-156. doi: 10.1016/j.commatsci.2011.02.005
    [5] Ullah H, Harland A R, Silberschmidt V V. Damage modelling in woven-fabric CFRP laminates under large-deflection bending[J]. Computational Materials Science, 2012, 64: 130-135. doi: 10.1016/j.commatsci.2012.05.036
    [6] 杨慧. 复合材料层合板三点弯曲损伤失效数值研究[J]. 燃气涡轮试验与研究, 2006, 19(4): 38-42. doi: 10.3969/j.issn.1672-2620.2006.04.009

    YANG H. Simulation of the damage progression of composite panels under three-point bending load[J]. Gas Turbine Experiment and Research, 2006, 19(4): 38-42(in Chinese). doi: 10.3969/j.issn.1672-2620.2006.04.009
    [7] Zhou H W, Mishnaevsky L, Brøndsted P, et al. SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests[J]. Chinese Science Bulletin, 2010, 55: 1199-1208. doi: 10.1007/s11434-009-0560-1
    [8] 庄蔚敏, 王楠, 吴迪, 等. 碳纤维复合材料层合板三点弯曲损伤仿真研究[J]. 机械工程学报, 2019, 55(10): 109-114. doi: 10.3901/JME.2019.10.109

    ZHUANG Weimin, WANG Nan, WU Di, et al. Simulation and Analysis of the Damage of Carbon Fiber Composite Laminates under Three Point Bending Load[J]. Chinese journal of Mechanical Engineering, 2019, 55(10): 109-114(in Chinese). doi: 10.3901/JME.2019.10.109
    [9] 许良, 肖景厚, 宋万万, 等. 碳纤维复合材料层合板三点弯曲疲劳性能[J/OL]. 吉林大学学报(工学版): 1-10 [2023-09-21].

    XU Liang, XIAO Jinhou, SONG Wanwan, et al. Three-point bending fatigue properties of carbon fiber composite laminates [J/OL]. Journal of Jilin University(Engineering and Technology Edition): 1-10[2023-09-21](in Chinese).
    [10] 李辉, 赵春江, 梁建国等. 变刚度复合材料层合板力学特性及失效机理分析[J]. 复合材料科学与工程, 2022, (07): 5-10+24.

    LI Hui, ZHAO Chunjiang, LIANG Jianguo, et al. Analysis of mechanical properties and failure mechanism of variable stiffness composite laminates[J]. Composites Science And Engineering, 2022, (07): 5-10+24(in Chinese).
    [11] 叶辉, 李清原, 闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报(工学版), 2020, 50(03): 920-928.

    YE Hui, LI Qingyuan, YAN Kangkang. Mechanical properties of variable-stiffness carbon fiber composite laminates[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(03): 920-928(in Chinese).
    [12] 刘禹华, 高峰, 盛聪, 等. 变刚度复合材料夹芯板设计及模态分析[J]. 宇航材料工艺, 2021, 51(02): 26-30.

    LIU Yuhua, GAO Feng, SHENG Cong, et al. Design and Modal Analysis of Sandwich Plates With Variable Stiffness[J]. Aerospace Materials & Technology, 2021, 51(02): 26-30(in Chinese).
    [13] Cao Z, Fu H, Han Z. Comparative study on bezier curve and linear variable angle method for variable stiffness laminates[J]. Polymer Composites, 2019, 40(3): 952-960. doi: 10.1002/pc.24769
    [14] 潘杰, 原崇新, 李志远, 等. 考虑可制造性的变刚度复合材料加筋壁板的优化设计[J]. 航空科学技术, 2023, 34(03): 64-70.

    PAN Jie, YUAN Chongxin, LI Zhiyuan, et al. Optimization Design of Variable Stiffness Stiffened Composites Considering Manufacturability[J]. Aeronautical Science & Technology, 2023, 34(03): 64-70(in Chinese).
    [15] Gao T, Wang X, Liu C, et al. Experimental study on the influence of lamination parameters on the vibration characteristics of variable stiffness composite laminates[J]. Composite Structures, 2023, 312: 116882. doi: 10.1016/j.compstruct.2023.116882
    [16] Marques F E C, Mota A F S, Loja M A R. Variable stiffness composites: optimal design studies[J]. Journal of Composites Science, 2020, 4(2): 80. doi: 10.3390/jcs4020080
    [17] 张雅会, 陈普会, 孔斌. 变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真[J]. 复合材料学报, 2023, 40(04): 2377-2389.

    ZHANG Yahui, CHEN Puhui, KONG Bin. Experimental verification and numerical simulation of buckling behavior of variable stiffness composite plates and open-hole plates[J]. Acta Materiae Compositae Sinica, 2023, 40(04): 2377-2389(in Chinese).
    [18] Zhang Y, Kong B, Gu J, et al. Experimental investigation on the buckling and post-buckling behavior of variable stiffness laminates[J]. Thin-Walled structures, 2023. DOI:10.1016/ j.tws.2022.110450.
    [19] Pinna C, Soutis C. Modelling impact damage in composite laminates: a simulation of intra-and inter-laminar cracking[J]. Composite Structures, 2014, 114: 10-19. doi: 10.1016/j.compstruct.2014.03.052
    [20] Russell B P, Liu T, Fleck N A, et al. The soft impact of composite sandwich beams with a square-honeycomb core[J]. International Journal of Impact Engineering, 2012, 48: 65-81. doi: 10.1016/j.ijimpeng.2011.04.007
    [21] 牛雪娟, 李辰阳, 刘江雨. 变刚度CFRP层合板在低速冲击下的分层失效分析[J]. 固体火箭技术, 2022, 45(03): 431-437. doi: 10.7673/j.issn.1006-2793.2022.03.015

    NIU Xuejuan, LI Chenyang, LIU Jiangyu. Delamination failure analysis of variable stiffness CFRP laninates under low-velocity impact[J]. Joumal of Solid Rocket Technology, 2022, 45(03): 431-437(in Chinese). doi: 10.7673/j.issn.1006-2793.2022.03.015
    [22] 周俊杰, 王生楠. 低速冲击下碳纤维复合层合板数值模拟研究[C]//第二十一届全国复 合材料学术会议(NCCM-21)论文集. 呼和浩特, 2020: 44-51.

    ZHOU Junjie, WANG Nansheng. Numerical simulation of carbon fiber composite laminates subject to low velocity impact [C]// Proceedings of the 21st National Conference on composite materials (NCCM-21). Huhehaote, 2020: 44-51(in Chinese).
  • 加载中
计量
  • 文章访问数:  137
  • HTML全文浏览量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 修回日期:  2023-12-25
  • 录用日期:  2023-12-28
  • 网络出版日期:  2024-01-29

目录

    /

    返回文章
    返回