留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能

马金环 魏智强 丁梅杰 赵继威

马金环, 魏智强, 丁梅杰, 等. g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能[J]. 复合材料学报, 2022, 41(0): 1-10
引用本文: 马金环, 魏智强, 丁梅杰, 等. g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能[J]. 复合材料学报, 2022, 41(0): 1-10
Jinhuan MA, Zhiqiang WEI, Meijie DING, Jiwei ZHAO. Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under Simulate visible light[J]. Acta Materiae Compositae Sinica.
Citation: Jinhuan MA, Zhiqiang WEI, Meijie DING, Jiwei ZHAO. Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under Simulate visible light[J]. Acta Materiae Compositae Sinica.

g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能

基金项目: 国家自然科学基金(52268042)、甘肃省自然科学基金(22 JR5 RA253)和兰州理工大学红柳一流学科发展项目
详细信息
    通讯作者:

    魏智强,教授,博士生导师,研究方向纳米材料 E-mail: qianweizuo@163.com

Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under Simulate visible light

Funds: Acknowledgements:the National Natural Science Foundation of China (52268042), the Natural Science Foundation of Gansu Province, China (22 JR5 RA253) and HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology.
  • 摘要:   目的  近年来,随着社会的快速发展,越来越多的国家开始注意环境问题,尤其是水环境的污染问题。水资源短缺和人类生产生活需水量的增加使得污水净化处理这一话题变热。  方法  为了研究FeOCl与碳材料复合后的光芬顿性能,采用简单的煅烧法将不同质量比例的g-CN与FeOCl复合制备出g-CN/FeOCl纳米复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射光谱(UV-vis DRS)、电化学阻抗测试(EIS)和瞬态光电流测试等方法对g-CN/FeOCl进行了成分、结构和光学性质表征。  结果  结果表明:g-CN/FeOCl复合材料呈层状纳米棒堆叠结构,光响应性能良好。当g-CN与FeOCl的复合比例为1:20时表现出优异的光芬顿性能,罗丹明B(RhB)的降解率达到92.4%。经过3次循环使用后复合材料降解RhB的效率依然保持在80.1%,表现出良好的稳定性。  结论  (1)选用煅烧法在250℃和550℃下制备了FeOCl和g-CN,在FeOCl基上引入无金属聚合物g-CN二者形成Z型异质结材料。XRD、TEM、XPS和EDS表明FeOCl与g-CN复合成功。(2)紫外可见漫反射光谱表明g-CN/FeOCl复合材料的带隙宽度介于FeOCl与g-CN之间,具有更好的可见光吸收性能。(3)电化学测试表明g-CN/FeOCl复合材料具有优异的光生载流子的迁移和分离能力。(4)光芬顿降解RhB测试中,g-CN/FeOCl-2的一阶动力学反应速率常数是纯的FeOCl的1.94倍。(5)通过活性物种捕获实验和能带结构的分析,得出g-CN/FeOCl在降解过程中以Z型异质结的载流子迁移路径进行。

     

  • 图  1  FeOCl、g-C3N4和g-C3N4/FeOCl复合材料的XRD图谱

    Figure  1.  XRD patterns of pure FeOCl, pure g-C3N4, and g-C3N4/FeOCl composites

    图  2  FeOCl的SEM图和内插图为纳米棒粒径图(a),g-C3N4/FeOCl-2的TEM(b)和HRTEM图(c)、选区电子衍射(d)、EDS图(e)和TEM-mapping图(f~k)

    Figure  2.  (a) SEM and Particle size images of FeOCl; (b) TEM and (c) HRTEM; (d) Selected Area Electron Diffraction images and (e) EDS and (f~k) TEM-Mapping spectra of g-C3N4/FeOCl-2

    图  3  g-C3N4/FeOCl-2和FeOCl的:(a)XPS全谱,(b)Fe 2 p、(c)O 1 s、(d)Cl 2 p,(e)C 1 s和(f)N 1 s的分谱

    Figure  3.  (a) XPS survey spectra and (b) also XPS spectra of Fe 2 p, (c) O 1 s, (d) Cl 2 p, (e) C 1 s, and (f) N 1 s in the g- C3N4/FeOCl-2

    图  4  FeOCl、g-C3N4和g-C3N4/FeOCl复合材料的:(a)UV-vis吸收光谱和(b-f)(αhν)1/2-hν曲线

    Figure  4.  (a) UV-vis absorption spectra and (b-f) the (αhν)1/2 - hν curve of pure FeOCl, pure g-C3N4, and g-C3N4/FeOCl composite

    图  5  FeOCl、g-C3N4和g-C3N4/FeOCl-2的:(a)电化学阻抗谱和(b)瞬态光电流谱

    Figure  5.  (a) Electrochemical impedance spectroscopy and (b) Transient photocurrent responses of pure FeOCl, g-C3N4, and g-C3N4/FeOCl-2 samples

    图  6  FeOCl(a)和g-C3N4的M-S图(b)

    Figure  6.  M-S plots of pure FeOCl (a) and g-C3N4 (b)

    图  7  FeOCl、g-C3N4和 g-C3N4/FeOCl 降解RhB的光芬顿性能(a)和相对的一阶动力学曲线(b),g-C3N4/FeOCl-2的循环稳定性图(c)和自由基捕获图(d)

    Figure  7.  (a) Photo-Fenton degradation property of FeOCl, g-C3N4 and g-C3N4/FeOCl samples for RhB, (b) Corresponding first-order kinetic curve, (c) Cycling stability curve, and (d) Radical-trapping experiment of g-C3N4/FeOCl-2

    Ct−Pollutant concentration at the moment of t; C0−Original pollutant concentration

    图  8  g-C3N4/FeOCl-2的SEM图(a)循环实验前和(b)循环实验后

    Figure  8.  Images of g-C3N4/FeOCl-2 material (a) before and (b) after the cycling experiment

    图  9  (a)n-n 型异质结的载流子分布图和(b)g-C3N4/FeOCl-2样品在可见光照射下降解RhB的光芬顿机制图

    Figure  9.  (a) Band diagram of n-n type heterojunction and (b) the schematic diagram of photo-Fenton mechanism of g-C3N4/FeOCl-2

  • [1] MA J H, WEI Z Q, LI L, et al. Synthesis and photoelectrochemical properties of visible-light response g-C3N4@CdS heterojunctions photocatalyst[J]. Desalination and Water Treatment,2021,231:287-96. doi: 10.5004/dwt.2021.27488
    [2] LI C, WEI Z Q, CHEN Y R, et al. Photo-electrochemical and enhanced photocatalytic activity of CdS/rGO nanocomposites prepared by hydrothermal method[J]. Journal of Materials Science-Materials in Electronics,2021,32(17):22093-105. doi: 10.1007/s10854-021-06679-8
    [3] AMOR C, DE TORRES-SOCIAS E, PERES J A, et al. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes[J]. Journal of Hazardous Materials,2015,286:261-8. doi: 10.1016/j.jhazmat.2014.12.036
    [4] WEI Z Q, HUANG S P, ZHANG X D, et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites[J]. Journal of Materials Science-Materials in Electronics,2020,31(7):5176-86. doi: 10.1007/s10854-020-03077-4
    [5] ZHU Y F, MA S C, YANG Y, ET Al. Direct Z-scheme Fe2(MoO4)(3)/MoO3 heterojunction: Photo-Fenton reaction and mechanism comprehension[J]. Journal of Alloys and Compounds,2021,873:3549-3558.
    [6] YAO T J, JIA W J, FENG Y, ET al. Preparation of reduced graphene oxide nanosheet/FexOy/nitrogen-doped carbon layer aerogel as photo-Fenton catalyst with enhanced degradation activity and reusability[J]. Journal of Hazardous Materials,2019,362:62-71. doi: 10.1016/j.jhazmat.2018.08.084
    [7] QU S Y, WANG W H, PAN X Y, ET AL. Improving the Fenton catalytic performance of FeOCl using an electron mediator[J]. Journal of Hazardous Materials,2020,384:676-686.
    [8] PAN X Y, FAN X K, LIANG A P, et al. Electron-rich CNTs modified FeOCl/Fe2O3 with improved Fenton catalytic performance[J]. Composites Communications,2021,27:133324.
    [9] 范德锴, 吴志园, 吴怀欣, et al. FeOCl-COF的制备及其在非均相芬顿反应中的应用[J]. 化学试剂, 2021, 43(12):1651-1656.

    FAN D K, WU Z Y, WU H X et al. Preparation of Fe OCl-COF and Its Application in Heterogeneous Fenton reaction[J]. Chemical reagent,2021,43(12):1651-1656(in Chinese).
    [10] MA Y P, WANG J D, ZHANG X J, et al. Enhancement of Hg-0 oxidation removal in chloride-free flue gas over FeOCl-modified commercial selective catalytic reduction catalyst[J]. Colloid and Interface Science Communications,2021,44:22093-22105.
    [11] QU S Y, LI C L, SUN X, et al. Enhancement of peroxymonosulfate activation and utilization efficiency via iron oxychloride nanosheets in visible light[J]. Separation and Purification Technology,2019,224:132-41. doi: 10.1016/j.seppur.2019.04.084
    [12] SUN M, CHU C H, GENG F L, et al. Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H2O2 Activation[J]. Environmental Science & Technology Letters,2018,5(3):186-91.
    [13] SABRI M, HABIBI-YANGJEH A, CHAND H, et al. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance[J]. Separation and Purification Technology,2020,250:4230-4235.
    [14] 王金岭, 温玉真, 汪华林, et al. FeOCl层状材料及其插层化合物: 结构、性质与应用[J]. 化学进展, 2021, 33(2):263-280.

    WANG J L, WEN Y H, WANG H L et al. FeOCl and Its Intercalation Compounds: Structures, Properties and Applications[J]. Progress in chemistry,2021,33(2):263-280(in Chinese).
    [15] LUO H W, ZENG Y F, CHENG Y, et al. Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection[J]. Science of the Total Environment,2021,799:4704-4718.
    [16] YANG X J, XU X M, XU X C, et al. Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst[J]. Catalysis Today,2016,276:85-96. doi: 10.1016/j.cattod.2016.01.002
    [17] LIU X, ZHANG W Y, MAO L Q, et al. Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange[J]. Journal of Materials Science,2021,56(11):6704-18. doi: 10.1007/s10853-020-05715-y
    [18] LI D Y, XIAO Y, PU M J, ET al. A metal-free protonated g-C3 N4 as an effective sodium percarbonate activator at ambient pH conditions: Efficiency, stability and mechanism[J]. Materials Chemistry and Physics,2019,231:225-32. doi: 10.1016/j.matchemphys.2019.04.016
    [19] JIANG S Y, ZHENG H A, SUN X, et al. New and highly efficient Ultra-thin g-C3N4/FeOCl nanocomposites as photo-Fenton catalysts for pollutants degradation and antibacterial effect under visible light[J]. Chemosphere,2022,290:117268.
    [20] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D, et al. Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2021,617:538-549.
    [21] QU L H, DENG Z Y, YU J, et al. Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial[J]. Vacuum,2020,176:18-25.
    [22] LI X R, DAI Y, MA Y D, Et al. Graphene/ g-C3N4 bilayer: considerable band gap opening and effective band structure engineering[J]. Physical Chemistry Chemical Physics,2014,16(9):4230-5. doi: 10.1039/c3cp54592j
    [23] ZENG H M, LIU Y L, XU Z G, et al. Construction of a Z-scheme g-C3N4/Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide[J]. Chemical Communications,2019,55(79):11940-3. doi: 10.1039/C9CC05356E
    [24] 黄腾腾, 陈媛媛, 乔嘉伟, et al. 层状化合物FeOCl光催化材料的制备及改性研究[J]. 应用化工, 2020, 49(7):1772-5. doi: 10.3969/j.issn.1671-3206.2020.07.039

    HUANG T T, CHEN Y Y, QIAO J W et al. Study on preparation and modification of layered compoundFeOCl photocatalytic materials[J]. Applied chemical industy,2020,49(7):1772-5(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.07.039
    [25] NGUYEN V H, MOUSAVI M, GHASEMI J B, et al. In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity[J]. Journal of Colloid and Interface Science,2021,587:538-49. doi: 10.1016/j.jcis.2020.11.011
    [26] LUO J M, SUN M, Ritt C L, et al. Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCl) Nanosheets[J]. Environmental Science & Technology,2019,53(4):2075-85.
    [27] MA J Q, YANG Q F, WEN Y Z, et al. Fe- g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B-Environmental,2017,201:232-40. doi: 10.1016/j.apcatb.2016.08.048
    [28] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D. Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: Boosting visible-light-driven photocatalytic activity[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,87:98-111. doi: 10.1016/j.jtice.2018.03.017
    [29] VARAPRASAD H S, SRIDEVI P V, ANURADHA M S. Optical, morphological, electrical properties of ZnO-TiO2-SnO2/CeO2 semiconducting ternary nanocomposite[J]. Advanced Powder Technology,2021,32(5):1472-80. doi: 10.1016/j.apt.2021.02.042
    [30] HUANG S P, WEI Z Q, MA L, et al. Hydrothermal synthesis, photo-electrochemical and photocatalytic activity of SnS2/CdS nanocomposites[J]. Journal of Materials Science-Materials in Electronics,2021,32(1):676-86. doi: 10.1007/s10854-020-04848-9
    [31] 马金环, 魏智强, 梁家浩, et al. 水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料 [J]. 复合材料学报: 1-10.

    MA J H, WEI Z Q, LIANG J H et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performancesupercapacitor electrodes [J]. Acta Materiae Compositae Sinica: 1-10(in chinese).
    [32] 艾兵, 吕盼娣, 张腾, et al. Cu-P复合改性对g-C3N4可见光催化性能的影响 [J]. 工业水处理: 1-12.

    AI B, LV P T, ZHANG T et al. Effect of Cu-P composite modification on visible-light catalytic performance of g-C3N4[J]. Industial water treament, 1-12(in chinese).
    [33] REN H T, JIA S Y, WU S H, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3/ g-C3N4 composite with enhanced photocatalytic activity[J]. Materials Letters,2015,142:15-8. doi: 10.1016/j.matlet.2014.11.082
    [34] ZHENG J H, ZHANG L. Incorporation of CoO nanoparticles in 3 D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability[J]. Applied Catalysis B-Environmental,2018,237:1-8. doi: 10.1016/j.apcatb.2018.05.060
    [35] YANG H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms[J]. Materials Research Bulletin,2021,142:111406. doi: 10.1016/j.materresbull.2021.111406
    [36] LI D Y, Hussain S, WANG Y J, et al. ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction[J]. Applied Catalysis B-Environmental,2021:286.
    [37] XING W X, ZHOU L, CHEN B, et al. alpha-FeOOH-MoO3 Nanorod for Effective Photo-Fenton Degradation of Dyes and Antibiotics at a Wide Range of pH[J]. Chemistry-an Asian Journal,2020,15(17):2749-53. doi: 10.1002/asia.202000668
    [38] YE Y C, YANG H, WANG X X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing,2018,82:14-24. doi: 10.1016/j.mssp.2018.03.033
    [39] 郭彬, 杨静, 卢文欣, et al. Cu(Ⅱ)金属有机骨架中配位环境对类Fenton反应活性的影响[J]. 无机化学学报, 2022, 38(10):1981-92. doi: 10.11862/CJIC.2022.185

    GUO B, YANG J, LU W X et al. Effect of Coordination Environment on Fenton-like Reactivity in Cu(II) Metal-Organic Frameworks[J]. Chinese journal of inorganic chemistry,2022,38(10):1981-92(in Chinese). doi: 10.11862/CJIC.2022.185
    [40] CHEN C R R, WANG X D D, WANG S L L, et al. Direct Z-Scheme Structure g-C3N4-BiOI with Highly Efficient Visible-Light-Driven Photocatalytic Activity for Bacteria Inactivation[J]. Chemistryselect,2020,5(47):15084-90. doi: 10.1002/slct.202003942
  • 加载中
计量
  • 文章访问数:  208
  • HTML全文浏览量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-10
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回