留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能

马金环 魏智强 丁梅杰 赵继威

马金环, 魏智强, 丁梅杰, 等. g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能[J]. 复合材料学报, 2023, 40(10): 5820-5829. doi: 10.13801/j.cnki.fhclxb.20221226.002
引用本文: 马金环, 魏智强, 丁梅杰, 等. g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能[J]. 复合材料学报, 2023, 40(10): 5820-5829. doi: 10.13801/j.cnki.fhclxb.20221226.002
MA Jinhuan, WEI Zhiqiang, DING Meijie, et al. Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under simulate visible light[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5820-5829. doi: 10.13801/j.cnki.fhclxb.20221226.002
Citation: MA Jinhuan, WEI Zhiqiang, DING Meijie, et al. Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under simulate visible light[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5820-5829. doi: 10.13801/j.cnki.fhclxb.20221226.002

g-C3N4/FeOCl纳米复合材料的制备及其光芬顿降解RhB性能

doi: 10.13801/j.cnki.fhclxb.20221226.002
基金项目: 国家自然科学基金(52268042);甘肃省自然科学基金(22JR5RA253);兰州理工大学红柳一流学科发展项目
详细信息
    通讯作者:

    魏智强,博士,教授,博士生导师,研究方向纳米材料 E-mail: qianweizuo@163.com

  • 中图分类号: TB332

Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under simulate visible light

Funds: National Natural Science Foundation of China (52268042); Natural Science Foundation of Gansu Province (22JR5RA253); HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology
  • 摘要: 为了研究FeOCl与碳材料复合后的光芬顿性能,采用简单的煅烧法将不同质量比的g-C3N4与FeOCl复合制备出g-C3N4/FeOCl纳米复合材料。通过XRD、SEM、TEM、XPS、UV-vis DRS、EIS和瞬态光电流测试等方法对g-C3N4/FeOCl进行了结构、形貌、元素组成、光电化学性能进行表征。结果表明:g-C3N4/FeOCl复合材料呈层状纳米棒堆叠结构,光响应性能良好,载流子分离能力明显改善。当g-C3N4与FeCl3·6H2O的复合比例为1∶20时表现出优异的光芬顿性能,罗丹明B (RhB)的降解率达到92.4%,并且经过3次循环使用后复合材料降解RhB的效率依然保持在80.1%,表现出良好的稳定性。基于实验结果,提出g-C3N4与FeOCl之间构建成Z型异质结,提高了光生载流子的分离效率,探讨了Z 型异质结光芬顿降解RhB的可能降解机制。

     

  • 图  1  FeOCl、g-C3N4和g-C3N4/FeOCl复合材料的XRD图谱

    Figure  1.  XRD patterns of FeOCl, g-C3N4 and g-C3N4/FeOCl composites

    图  2  (a) FeOCl的SEM图像和粒径分布;g-C3N4/FeOCl-2的TEM (b) 和HRTEM图像 (c)、选区电子衍射 (d)、EDS图 (e) 和TEM-mapping图 ((f)~(l))

    Figure  2.  (a) SEM image and particle size distribution of FeOCl; TEM (b) and HRTEM (c) images, selected area electron diffraction image (d), EDS (e) and TEM-mapping ((f)~(l)) spectra of g-C3N4/FeOCl-2

    d—Interplanar spacing

    图  3  g-C3N4/FeOCl-2和FeOCl的XPS图谱:(a) 全谱;(b) Fe2p;(c) O1s;(d) Cl 2p;(e) C1;(f) N1

    Figure  3.  XPS spectra of the g-C3N4/FeOCl-2 and FeOCl: (a) Survey spectra; (b) Fe2p; (c) O1s; (d) Cl 2p; (e) C1; (f) N1

    图  4  FeOCl、g-C3N4和g-C3N4/FeOCl复合材料的UV-vis吸收光谱 (a) 和(αhν)1/2-曲线估算材料的带隙值 ((b)~(f))

    Figure  4.  UV-vis absorption spectra (a) and the bandgap value of FeOCl, g-C3N4, and g-C3N4/FeOCl composites that estimated by a related curve of (αhν)1/2- plotted ((b)-(f))

    α—Absorption coefficient; —Photon energy; Eg—Energy gap

    图  5  FeOCl、g-C3N4和g-C3N4/FeOCl-2的电化学阻抗谱 (a) 和瞬态光电流谱 (b)

    Figure  5.  Electrochemical impedance spectroscopy (a) and transient photocurrent responses (b) of FeOCl, g-C3N4, and g-C3N4/FeOCl-2 composites

    图  6  FeOCl (a)和g-C3N4 (b)的莫特-肖特基(M-S)图

    Figure  6.  Mott-Schottky (M-S) plots of FeOCl (a) and g-C3N4 (b)

    SCE—Standard calomel electrode

    图  7  FeOCl、g-C3N4和 g-C3N4/FeOCl 降解罗丹明B (RhB)的光芬顿性能 (a) 和相对的一级动力学曲线 (b);g-C3N4/FeOCl-2的循环稳定性 (c) 和自由基捕获试验 (d)

    Figure  7.  Photo-Fenton degradation property (a) and corresponding first-order kinetic curves (b) of FeOCl, g-C3N4 and g-C3N4/FeOCl samples for rhodamine B (RhB); Cycling stability curves (c) and radical-trapping experiment (d) of g-C3N4/FeOCl-2

    Ct—Pollutant concentration at the moment of t; C0—Original pollutant concentration; IPA—Iso-propyl alcohol; p-BQ—p-benzoquinone; IA—Methanol

    图  8  循环实验前(a)和循环实验后(b)的g-C3N4/FeOCl-2的SEM图像

    Figure  8.  SEM images of g-C3N4/FeOCl-2 composites before (a) and after (b) the cycling experiment

    图  9  (a) n-n 型异质结的载流子分布图;(b) g-C3N4/FeOCl-2样品在可见光照射下降解RhB的光芬顿机制

    Figure  9.  (a) Band diagram of n-n type heterojunction; (b) Schematic diagram of photo-Fenton mechanism of g-C3N4/FeOCl-2

    EF—Fermi energy levels; qVD—Built-in electric field; Ed—Energy level difference; NHE—Standard hydrogen electrode; CB—Conduction band; VB—Valence band

    表  1  g-C3N4/FeOCl复合材料的命名

    Table  1.   Naming of g-C3N4/FeOCl composites

    Sample Mass ratio g-C3N4∶FeCl3·6H2O
    g-C3N4/FeOCl-1 1∶15
    g-C3N4/FeOCl-2 1∶20
    g-C3N4/FeOCl-3 1∶25
    下载: 导出CSV
  • [1] MA J H, WEI Z Q, LI L, et al. Synthesis and photoelectrochemical properties of visible-light response g-C3N4@CdS heterojunctions photocatalyst[J]. Desalination and Water Treatment,2021,231:287-296. doi: 10.5004/dwt.2021.27488
    [2] LI C, WEI Z Q, CHEN Y R, et al. Photo-electrochemical and enhanced photocatalytic activity of CdS/rGO nanocomposites prepared by hydrothermal method[J]. Journal of Materials Science: Materials in Electronics,2021,32(17):22093-22105. doi: 10.1007/s10854-021-06679-8
    [3] AMOR C, DE TORRES-SOCÍAS E, PERES J A, et al. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes[J]. Journal of Hazardous Materials,2015,286:261-268. doi: 10.1016/j.jhazmat.2014.12.036
    [4] WEI Z Q, HUANG S P, ZHANG X D, et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2020,31(7):5176-5186. doi: 10.1007/s10854-020-03077-4
    [5] ZHU Y F, MA S C, YANG Y, et al. Direct Z-scheme Fe2(MoO4)3/MoO3 heterojunction: Photo-Fenton reaction and mechanism comprehension[J]. Journal of Alloys and Compounds,2021,873:3549-3558.
    [6] YAO T J, JIA W J, FENG Y, et al. Preparation of reduced graphene oxide nanosheet/FexOy/nitrogen-doped carbon layer aerogel as photo-Fenton catalyst with enhanced degradation activity and reusability[J]. Journal of Hazardous Materials,2019,362:62-71. doi: 10.1016/j.jhazmat.2018.08.084
    [7] QU S Y, WANG W H, PAN X Y, et al. Improving the Fenton catalytic performance of FeOCl using an electron mediator[J]. Journal of Hazardous Materials,2020,384:676-686.
    [8] PAN X Y, FAN X K, LIANG A P, et al. Electron-rich CNTs modified FeOCl/Fe2O3 with improved Fenton catalytic performance[J]. Composites Communications,2021,27:133324.
    [9] 范德锴, 吴志园, 吴怀欣, 等. FeOCl-COF的制备及其在非均相芬顿反应中的应用[J]. 化学试剂, 2021, 43(12):1651-1656.

    FAN Dekai, WU Zhiyuan, WU Huaixin, et al. Preparation of FeOCl-COF and its application in heterogeneous Fenton reaction[J]. Chemical Reagents,2021,43(12):1651-1656(in Chinese).
    [10] MA Y P, WANG J D, ZHANG X J, et al. Enhancement of Hg0 oxidation removal in chloride-free flue gas over FeOCl-modified commercial selective catalytic reduction catalyst[J]. Colloid and Interface Science Communications,2021,44:100472. doi: 10.1016/j.colcom.2021.100472
    [11] QU S Y, LI C L, SUN X, et al. Enhancement of peroxymonosulfate activation and utilization efficiency via iron oxychloride nanosheets in visible light[J]. Separation and Purification Technology,2019,224:132-141. doi: 10.1016/j.seppur.2019.04.084
    [12] SUN M, CHU C H, GENG F L, et al. Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH-insensitive H2O2 activation[J]. Environmental Science & Technology Letters,2018,5(3):186-191.
    [13] SABRI M, HABIBI-YANGJEH A, CHAND H, et al. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance[J]. Separation and Purification Technology,2020,250:4230-4235.
    [14] 王金岭, 温玉真, 汪华林, 等. FeOCl层状材料及其插层化合物: 结构、性质与应用[J]. 化学进展, 2021, 33(2):263-280.

    WANG Jinling, WEN Yuzhen, WANG Hualin, et al. FeOCl and its intercalation compounds: Structures, properties and applications[J]. Progress in Chemistry,2021,33(2):263-280(in Chinese).
    [15] LUO H W, ZENG Y F, CHENG Y, et al. Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection[J]. Science of the Total Environment,2021,799:4704-4718.
    [16] YANG X J, XU X M, XU X C, et al. Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst[J]. Catalysis Today,2016,276:85-96. doi: 10.1016/j.cattod.2016.01.002
    [17] LIU X, ZHANG W Y, MAO L Q, et al. Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange[J]. Journal of Materials Science,2021,56(11):6704-6718. doi: 10.1007/s10853-020-05715-y
    [18] LI D Y, XIAO Y, PU M J, et al. A metal-free protonated g-C3N4 as an effective sodium percarbonate activator at ambient pH conditions: Efficiency, stability and mechanism[J]. Materials Chemistry and Physics,2019,231:225-232. doi: 10.1016/j.matchemphys.2019.04.016
    [19] JIANG S Y, ZHENG H A, SUN X, et al. New and highly efficient ultra-thin g-C3N4/FeOCl nanocomposites as photo-Fenton catalysts for pollutants degradation and antibacterial effect under visible light[J]. Chemosphere,2022,290:117268.
    [20] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D, et al. Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,617:538-549.
    [21] QU L H, DENG Z Y, YU J, et al. Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial[J]. Vacuum,2020,176:18-25.
    [22] LI X R, DAI Y, MA Y D, et al. Graphene/ g-C3N4 bilayer: Considerable band gap opening and effective band structure engineering[J]. Physical Chemistry Chemical Physics,2014,16(9):4230-4235. doi: 10.1039/c3cp54592j
    [23] ZENG H M, LIU Y L, XU Z G, et al. Construction of a Z-scheme g-C3N4/Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide[J]. Chemical Communications,2019,55(79):11940-11943. doi: 10.1039/C9CC05356E
    [24] 黄腾腾, 陈媛媛, 乔嘉伟, 等. 层状化合物FeOCl光催化材料的制备及改性研究[J]. 应用化工, 2020, 49(7):1772-1775. doi: 10.3969/j.issn.1671-3206.2020.07.039

    HUANG Tengteng, CHEN Yuanyuan, QIAO Jiawei, et al. Study on preparation and modification of layered compound FeOCl photocatalytic materials[J]. Applied Chemical Industy,2020,49(7):1772-1775(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.07.039
    [25] NGUYEN V H, MOUSAVI M, GHASEMI J B, et al. In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity[J]. Journal of Colloid and Interface Science,2021,587:538-549. doi: 10.1016/j.jcis.2020.11.011
    [26] LUO J M, SUN M, RITT C L, et al. Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets[J]. Environmental Science & Technology,2019,53(4):2075-2085.
    [27] MA J Q, YANG Q F, WEN Y Z, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B: Environmental,2017,201:232-240. doi: 10.1016/j.apcatb.2016.08.048
    [28] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D. Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: Boosting visible-light-driven photocatalytic activity[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,87:98-111. doi: 10.1016/j.jtice.2018.03.017
    [29] VARAPRASAD H S, SRIDEVI P V, ANURADHA M S. Optical, morphological, electrical properties of ZnO-TiO2-SnO2/CeO2 semiconducting ternary nanocomposite[J]. Advanced Powder Technology,2021,32(5):1472-1480. doi: 10.1016/j.apt.2021.02.042
    [30] HUANG S P, WEI Z Q, MA L, et al. Hydrothermal synthesis, photo-electrochemical and photocatalytic activity of SnS2/CdS nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2021,32(1):676-686. doi: 10.1007/s10854-020-04848-9
    [31] 马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 4580-4589.

    MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Composite Sinica, 2022, 39(10): 4580-4589(in Chinese).
    [32] 艾兵, 吕盼娣, 张腾, 等. Cu-P复合改性对g-C3N4可见光催化性能的影响[J]. 工业水处理, 2023, 43(8): 149-154.

    AI Bing, LYU Pandi, ZHANG Teng, et al. Effect of Cu-P composite modification on visible-light catalytic performance of g-C3N4[J]. Industial Water Treament, 2023, 43(8): 149-154(in Chinese).
    [33] REN H T, JIA S Y, WU S H, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3/g-C3N4 composite with enhanced photocatalytic activity[J]. Materials Letters,2015,142:15-18. doi: 10.1016/j.matlet.2014.11.082
    [34] ZHENG J H, ZHANG L. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability[J]. Applied Catalysis B: Environmental,2018,237:1-8. doi: 10.1016/j.apcatb.2018.05.060
    [35] YANG H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms[J]. Materials Research Bulletin,2021,142:111406. doi: 10.1016/j.materresbull.2021.111406
    [36] LI D Y, HUSSAIN S, WANG Y J, et al. ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental,2021,286:119887. doi: 10.1016/j.apcatb.2021.119887
    [37] XING W X, ZHOU L, CHEN B, et al. α-FeOOH-MoO3 nanorod for effective photo-Fenton degradation of dyes and antibiotics at a wide range of pH[J]. Chemistry, an Asian Journal,2020,15(17):2749-2753. doi: 10.1002/asia.202000668
    [38] YE Y C, YANG H, WANG X X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing,2018,82:14-24. doi: 10.1016/j.mssp.2018.03.033
    [39] 郭彬, 杨静, 卢文欣, 等. Cu(II)金属有机骨架中配位环境对类Fenton反应活性的影响[J]. 无机化学学报, 2022, 38(10):1981-1992. doi: 10.11862/CJIC.2022.185

    GUO Bin, YANG Jing, LU Wenxin, et al. Effect of coordination environment on Fenton-like reactivity in Cu(II) metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry,2022,38(10):1981-1992(in Chinese). doi: 10.11862/CJIC.2022.185
    [40] CHEN C R, WANG X D, WANG S L, et al. Direct Z-scheme structure g-C3N4-BiOI with highly efficient visible-light-driven photocatalytic activity for bacteria inactivation[J]. Chemistry Select,2020,5(47):15084-15090. doi: 10.1002/slct.202003942
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  370
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-10
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回