留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响

朱培 张晓民 俞洁 杨爽 陈天星 贺攀阳

朱培, 张晓民, 俞洁, 等. 粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响[J]. 复合材料学报, 2023, 40(1): 342-354. doi: 10.13801/j.cnki.fhclxb.20220307.001
引用本文: 朱培, 张晓民, 俞洁, 等. 粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响[J]. 复合材料学报, 2023, 40(1): 342-354. doi: 10.13801/j.cnki.fhclxb.20220307.001
ZHU Pei, ZHANG Xiaomin, YU Jie, et al. Impact of Fe content of coal fly ash magnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 342-354. doi: 10.13801/j.cnki.fhclxb.20220307.001
Citation: ZHU Pei, ZHANG Xiaomin, YU Jie, et al. Impact of Fe content of coal fly ash magnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 342-354. doi: 10.13801/j.cnki.fhclxb.20220307.001

粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响

doi: 10.13801/j.cnki.fhclxb.20220307.001
基金项目: 咸阳市科技局资助的研发项目:基于粉煤灰的先进吸附材料的开发(2021ZDYF-GY-0034);酒钢集团科技研发项目资助项目(4500618489)
详细信息
    通讯作者:

    张晓民,博士,教授,博士生导师,研究方向为矿物材料、固废资源化利用 E-mail:xmzhang@xauat.edu.cn

  • 中图分类号: TB333

Impact of Fe content of coal fly ash magnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites

Funds: R&D Program Funded by the Science and Technology Bureau of Xianyang City: Development of Advanced Adsorbing Materials Based on Coal Fly Ash (2021ZDYF-GY-0034); Jiujiang Steel Group Science and Technology R&D Project Funding Project (4500618489)
  • 摘要: 以粉煤灰磁珠作为原料,采用化学气相沉积(CVD)方法制备纳米结构铁/碳复合材料。该复合材料呈现良好的吸波性能,但存在磁珠性质不均一、结构调控难等问题。本文采用摇床方法对磁珠进行分选,并进行研磨处理,考察了磁珠Fe含量和研磨粒径对CVD生成产物的影响。结果表明,富铁磁珠CVD生成产物为碳包覆磁性颗粒与碳纳米管组成的复合材料(Fe3C@C-CNTs),该复合材料呈现多孔团簇球形结构。磁珠Fe含量增加,复合材料的相对碳沉积量(C/Fe值)减小,石墨化程度降低(D峰和G峰面积比ID/IG值升高),导致材料阻抗匹配值升高,吸波性能获得提升。磁珠Fe含量为71.43wt%时,复合材料有效吸收频带达到4.5 GHz,最小反射损耗(RLmin)达到−16.1 dB。对磁珠进行研磨后,CVD生成产物的C/Fe值不变,但碳沉积速率增大,ID/IG值升高,电磁波衰减常数下降,但阻抗匹配明显提高,吸波性能大幅度提升。研磨粒径为18.23 μm时,复合材料有效吸收频带达到4.8 GHz,RLmin可达到−34.7 dB。分析表明,复合材料优异的吸波性能得益于CNTs和Fe3C@C对电磁波的协同吸收作用;独特的多孔团簇结构增强了电磁波在材料中多次反射,促进了界面极化。

     

  • 图  1  MSs与纳米铁/碳-碳纳米管(Fe3C@C-CNTs)复合材料的XRD图谱

    Figure  1.  XRD patterns of MSs and nano-structured iron/carbon-carbon nanotubes (Fe3C@C-CNTs) composites

    1—Magnetite; 2—Maghemite; 3—Magnesioferrite; 4—Hematite; 5—Quartz; 6—Fe3C; 7—Graphite

    图  2  Fe3C@C-CNTs复合材料的SEM图像 (a) 和TEM图像 (b)

    Figure  2.  SEM image (a) and TEM image (b) of Fe3C@C-CNTs composites

    图  3  摇床分选产物磁珠剖面SEM图像:(a) 1#;(b) 2#;(c) 3#;摇床分选产物制备的Fe3C@C-CNTs复合材料SEM图像:(d) S1-1;(e) S1-2;(f) S1-3

    Figure  3.  SEM images of magnetospheress section of specific gravity product: (a ) 1#; (b) 2#; (c) 3#; SEM images of Fe3C@C-CNTs composites prepared by shaker separation products: (d) S1-1; (e) S1-2; (f) S1-3

    图  4  摇床分选产物制备的Fe3C@C-CNTs复合材料拉曼光谱

    Figure  4.  Raman spectra of Fe3C@C-CNTs composite prepared by shaker separation products

    D—D peak; G—G peak; ID—D peak intensity; IG—G peak intensity

    图  5  摇床分选产物制备的Fe3C@C-CNTs复合材料介电常数和磁导率

    Figure  5.  Permittivity and permeability of Fe3C@C-CNTs composite prepared by shaker separation products

    图  6  摇床分选产物制备Fe3C@C-CNTs复合材料的衰减常数(α) (a)和阻抗匹配值(Z) (b)

    Figure  6.  Attenuation constant (α) (a) and impedance matching value (Z) (b) of Fe3C@C-CNTs composite prepared by shaker separation products

    图  7  摇床分选产物制备的Fe3C@C-CNTs复合材料反射损耗图:(a) S1-1;(b) S1-2;((c)、(d)) S1-3

    Figure  7.  Reflective loss diagram of Fe3C@C-CNTs composites by shaker separation products: (a) S1-1; (b) S1-2; ((c), (d)) S1-3

    RL—Reflection loss

    图  8  研磨产物1 (a) 和产物2 (b) 的SEM图像;研磨产物制备的Fe3C@C-CNTs复合材料SEM图像:(c) S2-1;(d) S2-2

    Figure  8.  SEM images of grinding product 1 (a) and product 2 (b); SEM images of Fe3C@C-CNTs composites prepared by grinding products: (c) S2-1; (d) S2-2

    图  9  研磨产物制备的Fe3C@C-CNTs复合材料拉曼光谱

    Figure  9.  Raman spectra analysis results of Fe3C@C-CNTs composites prepared by grinding products

    图  10  研磨产物制备的Fe3C@C-CNTs复合材料的C/Fe值随制备时间的变化图

    Figure  10.  Plot of C/Fe values of Fe3C@C-CNTs composites prepared by grinding products with preparation time

    图  11  研磨产物制备的Fe3C@C-CNTs复合材料介电常数和磁导率

    Figure  11.  Permittivity and permeability of Fe3C@C-CNTs composites prepared by grinding products

    图  12  研磨产物制备的Fe3C@C-CNTs复合材料衰减常数(a)和阻抗匹配(b)

    Figure  12.  Attenuation constant (a) and impedance matching (b) of Fe3C@C-CNTs composites prepared by grinding products

    图  13  研磨产物制备的Fe3C@C-CNTs复合材料反射损耗图:(a) S2-1;((b)、(c)) S2-2

    Figure  13.  Reflective loss diagram of Fe3C@C-CNTs composites prepared by grinding products: (a) S2-1; ((b), (c)) S2-2

    表  1  −38 μm磁珠(MSs) EDX结果

    Table  1.   −38 μm magnetospheres (MSs) EDX results

    ElementMass fraction/wt%
    O 32.3
    Fe 52.4
    Si 5.7
    Al 2.6
    Ca 3.3
    Mg 2.5
    Mn 0.9
    Ti 0.3
    下载: 导出CSV

    表  2  MSs摇床分选产物1#、2#、3#的产率、密度、Fe含量

    Table  2.   Yield, density, and Fe content of MSs shaker separation products 1#, 2#, 3#

    Shaker separation
    products
    Yield/% Density/(g·cm−3) Fe/wt%
    1# 49.08 4.07 47.49
    2# 31.42 4.44 64.36
    3# 17.96 5.01 71.43
    下载: 导出CSV

    表  3  Fe3C@C-CNTs复合材料的C/Fe值

    Table  3.   C/Fe value of Fe3C@C-CNTs composites

    SampleC/Fe value
    S1-18.06
    S1-26.71
    S1-36.34
    Note:C/Fe value—Mass ratio of C to Fe.
    下载: 导出CSV

    表  4  磁珠研磨产物的粒径变化

    Table  4.   Particle size change of grinding products of magnetospheres

    Grinding productsDav/μm
    No grinding magnetospheres28.82
    Product 122.62
    Product 218.23
    Note: Dav—Average grain diameter.
    下载: 导出CSV

    表  5  碳基吸波材料的性能对比

    Table  5.   Performance comparison of carbon-based absorbing materials

    SampleMass fraction
    /wt%
    Bandwith/GHz
    RLmin/dBRef.
    3D Fe3O4/CNTs503.9−51.0[4]
    Fe@RC455.3−47.1[10]
    MCNO /MWCNT4.3−25.6[11]
    C@Fe@Fe3O4505.2−40.0[34]
    Fe/C nanofibers304.0−20.2[38]
    Fe3O4/C292.5−29.4[39]
    Fe@CNCs303.0−22.5[40]
    S1-3154.5−16.1This work
    S2-24.8−34.7
    Notes: RC—Residual carbon; MCNO—Magnetic carbon nano-onion matrix; MWCNT—Multi-walled carbon nanotubes; CNCs—Cored carbon nanocapsules; RLmin—Minimum reflection loss.
    下载: 导出CSV
  • [1] 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.

    XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese).
    [2] 张开创, 高欣宝, 张倩, 等. 碳包覆磁改性碳纳米管基复合材料制备及吸波性能研究[J]. 兵器装备工程学报, 2019, 40(4):46-49. doi: 10.11809/bqzbgcxb2019.04.012

    ZHANG Kaichuang, GAO Xinbao, ZHANG Qian, et al. Preparation and absorbing properties of carbon-coated magnetic modified carbon nanotube composites[J]. Journal of Equipment Engineering,2019,40(4):46-49(in Chinese). doi: 10.11809/bqzbgcxb2019.04.012
    [3] CUI L, HAN X, WANG F, et al. A review on recent advances in carbon-based dielectric system for microwave absorption[J]. Journal of Materials Science,2021,56(18):10782-10811. doi: 10.1007/s10853-021-05941-y
    [4] ZHU L, ZENG X, CHEN M, et al. Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances[J]. RSC Advances,2017,7(43):26801-26808. doi: 10.1039/C7RA04456A
    [5] FAN G, JIANG Y, XIN J, et al. Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18765-18774. doi: 10.1021/acssuschemeng.9b02913
    [6] WEI B, ZHOU C, YAO Z, et al. Lightweight and high-efficiency microwave absorption of reduced graphene oxide loaded with irregular magnetic quantum dots[J]. Journal of Alloys and Compounds,2021,886:161330. doi: 10.1016/j.jallcom.2021.161330
    [7] 刘渊, 贾瑛, 李茸. 碳纤维表面羰基铁的原位生长及吸波性能[J]. 无机化学学报, 2020, 36(2): 210-216.

    LIU Yuan, JIA Ying, LI Rong. In-situ growth and microwave absorption properties of carbonyl iron on carbon fiber surface[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 210-216(in Chinese).
    [8] WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology,2021,86(27):91-109.
    [9] LI G, WANG L, LI W, XU Y. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous & Mesoporous Materials,2015,211:97-104. doi: 10.1016/j.micromeso.2015.02.054
    [10] GAO S, CHEN L, ZHANG Y, et al. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber[J]. Composites Science and Technology,2021,213:108921. doi: 10.1016/j.compscitech.2021.108921
    [11] 邓钏, 张卫珂, 杨艳青, 等. 磁性纳米洋葱碳基复合材料的制备及其吸波性能[J]. 新型炭材料, 2019, 34(2):170-180.

    DENG Chuan, ZHANG Weike, YANG Yanqing, et al. Preparation and microwave absorption properties of magnetic carbon nano-onion matrix composites[J]. New Carbon Materials,2019,34(2):170-180(in Chinese).
    [12] KUANG D, HOU L, WANG S, et al. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles[J]. Carbon,2019,153:52-61. doi: 10.1016/j.carbon.2019.06.105
    [13] ZHANG Z, WU X, ZHOU T, et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion[J]. Proceedings of the Combustion Institute,2011,33(2):2853-2861. doi: 10.1016/j.proci.2010.07.061
    [14] VASSILEV S V, MENENDEZ R, BORREGO A G, et al. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates[J]. Fuel,2004,83(11-12):1563-1583. doi: 10.1016/j.fuel.2004.01.010
    [15] SHARONOVA O M, ANSHITS N N, SOLOVYOV L A, et al. Relationship between composition and structure of globules in narrow fractions of ferrospheres[J]. Fuel,2013,111:332-343. doi: 10.1016/j.fuel.2013.03.059
    [16] ZHANG X M, LI J, HE B, et al. Bamboo-shaped carbon nanotubes on coal fly ash cenospheres for Pb(II) adsorption[J]. Journal of Nanoscience and Nanotechnology,2020,20(8):5089-5095. doi: 10.1166/jnn.2020.18480
    [17] ZHANG X M, LI J, HE B, et al. Phase transformation and carbon precipitation of coal fly ash magnetospheres during a CVD process for microwave adsorption[J]. Ceramics International,2019,45(15):18980-18987. doi: 10.1016/j.ceramint.2019.06.138
    [18] SOKOL E V, KALUGIN V M, NIGMATULINA E N, et al. Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions[J]. Fuel,2002,81(7):867-876. doi: 10.1016/S0016-2361(02)00005-4
    [19] KOSHY N, SINGH D N. Fly ash zeolites for water treatme[J]. Journal of Environmental Chemical Engineering,2016,4(2):1460-1472. doi: 10.1016/j.jece.2016.02.002
    [20] XUE Q, LU S. Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis[J]. Journal of Zhejiang University-SCIENCE A,2008,9(11):1595-1600. doi: 10.1631/jzus.A0820051
    [21] 王欣, 展仁礼, 张晓民, 等. 粉煤灰磁珠精细化分级试验研究[J]. 选煤技术, 2021, 5(288):43-49.

    WANG Xin, ZHAN Renli, ZHANG Xiaomin, et al. Experimental study on fine classification of magnetosphere from coal fly ash[J]. Coal Preparation Technology,2021,5(288):43-49(in Chinese).
    [22] DONG S, ZHANG X, LI X, et al. SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption[J]. Chemical Engineering Journal,2020,392:123817. doi: 10.1016/j.cej.2019.123817
    [23] GAO S, ZHANG Y, XING H, et al. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,387:124149. doi: 10.1016/j.cej.2020.124149
    [24] DING D, WANG Y, LI X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. Carbon,2017,111:722-732. doi: 10.1016/j.carbon.2016.10.059
    [25] LIU W, SHAO Q, JI G, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal,2017,313:734-744. doi: 10.1016/j.cej.2016.12.117
    [26] STRZALKOWSKA E. Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash[J]. International Journal of Coal Geology,2021,240:103746. doi: 10.1016/j.coal.2021.103746
    [27] BARDE A A, KLAUSNER J F, MEI R. Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent[J]. International Journal of Hydrogen Energy,2016,41(24):10103-10119. doi: 10.1016/j.ijhydene.2015.12.129
    [28] BAJWA N, LI X, AJIYAN P M, et al. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology,2008,8(11):6054-6064. doi: 10.1166/jnn.2008.SW02
    [29] 刘盼盼, 李汉超, 杨林, 等. 退火温度对金属催化四面体非晶碳转变为石墨烯过程的影响[J]. 材料研究学报, 2018, 32(5):341-347. doi: 10.11901/1005.3093.2017.107

    LIU Panpan, LI Hanchao, YANG Lin, et al. Influence of annealing temperature on the metal-catalyzed crystallization of tetrahedral amorphous carbon to graphene[J]. Chinese Journal of Materials Research,2018,32(5):341-347(in Chinese). doi: 10.11901/1005.3093.2017.107
    [30] WANG D T, WANG X C, ZHANG X, et al. Tunable dielectric properties of carbon nanotube@polypyrrole core-shell hybrids by the shell thickness for electromagnetic wave absorption[J]. Chinese Physics Letters,2020,37(4):045201. doi: 10.1088/0256-307X/37/4/045201
    [31] CHENG Y, ZHAO H, ZHAO Y, et al. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response[J]. Carbon,2020,161:870-879. doi: 10.1016/j.carbon.2020.02.011
    [32] LIU L, HE P, ZHOU K C, et al. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers[J]. AIP Advances,2013,3(8):082112. doi: 10.1063/1.4818495
    [33] GAO S, YANG S H, WANG H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438-444. doi: 10.1016/j.carbon.2020.02.031
    [34] LV H, JI G, LIU W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features[J]. Journal of Materials Chemistry C,2015,3(39):10232-10241. doi: 10.1039/C5TC02512E
    [35] LI S, LIN L, YAO L, et al. MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,856:158183. doi: 10.1016/j.jallcom.2020.158183
    [36] 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601.

    YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601(in Chinese).
    [37] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7): 3292-3302.

    YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3292-3302(in Chinese).
    [38] ZHENG Q, YU M, WANG W, et al. Enhanced microwave absorption performance of Fe/C nanofibers by adjusting the magnetic particle size using different electrospinning solvents[J]. Ceramics International,2020,46(18):28603-28612. doi: 10.1016/j.ceramint.2020.08.018
    [39] KHANI O, SHOUSHTARI M Z, JAZIREHPOUR M, et al. Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core-shell nanoparticles[J]. Ceramics International,2016,42(13):14548-14556. doi: 10.1016/j.ceramint.2016.06.069
    [40] WANG Y, WANG W, SUN J, et al. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance[J]. Carbon,2018,135:1-11. doi: 10.1016/j.carbon.2018.04.026
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  475
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-06
  • 录用日期:  2022-02-17
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回