留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene-PEDOT:PSS修饰PDMS多孔弹性体高灵敏度柔性压阻传感器

史菲菲 熊娟 但智钢

史菲菲, 熊娟, 但智钢. MXene-PEDOT:PSS修饰PDMS多孔弹性体高灵敏度柔性压阻传感器[J]. 复合材料学报, 2024, 42(0): 1-7.
引用本文: 史菲菲, 熊娟, 但智钢. MXene-PEDOT:PSS修饰PDMS多孔弹性体高灵敏度柔性压阻传感器[J]. 复合材料学报, 2024, 42(0): 1-7.
SHI Feifei, XIONG Juan, DAN Zhigang. High sensitivity flexible piezoresistive sensor of PDMS porous elastomer decorated by MXene-PEDOT:PSS[J]. Acta Materiae Compositae Sinica.
Citation: SHI Feifei, XIONG Juan, DAN Zhigang. High sensitivity flexible piezoresistive sensor of PDMS porous elastomer decorated by MXene-PEDOT:PSS[J]. Acta Materiae Compositae Sinica.

MXene-PEDOT:PSS修饰PDMS多孔弹性体高灵敏度柔性压阻传感器

基金项目: 中国环境科学研究院国家环境保护生态工业重点实验室开放基金(2022KFF-08),湖北省自然科学基金项目(2022CFB518)
详细信息
    通讯作者:

    但智钢,博士,研究员,博士生导师,研究方向为工业固废处理与资源化 E-mail: dash_2001@163.com

  • 中图分类号: TP212;TB332

High sensitivity flexible piezoresistive sensor of PDMS porous elastomer decorated by MXene-PEDOT:PSS

Funds: Open Research Fund of State Environmental Protection Key Laboratory of Eco-industry, Chinese Research Academy of Environmental Sciences (2022KFF-08); Hubei Provincial Natural Science Foundation Project (2022CFB518)
  • 摘要: 柔性压阻传感器在可穿戴式设备、电子皮肤、人机交互等领域有着极大的应用需求。常见的柔性压阻传感器导电敏感介质存在成本高、制备工艺复杂的问题,限制了其实用化进程和批量化生产。本文以明胶为牺牲剂制备了具有多孔结构的聚二甲基硅氧烷(PDMS)弹性体,再采用浸渍法获得了聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)和MXene复合修饰的PDMS柔性压阻传感器。实验表明,当PEDOT:PSS和MXene复合浓度分别为15 mg/mL和10 mg/mL时,传感器灵敏度获得最大值,在12~40 kPa压力范围内,灵敏度达29.1 kPa−1。经测试,所制备的传感器响应时间为0.36 s,回复时间为0.6 s。该传感器可以检测人体关节(手指、肘部、膝盖)运动,表明开发的压力传感器在智能衣物、柔性可穿戴电子设备及人机交互领域具有良好的应用前景。

     

  • 图  1  负载不同浓度PEDOT:PSS的PEDOT:PSS/PDMS弹性体SEM图. (a) 0 mg/mL; (b) 1 mg/mL; (c) 3 mg/mL; (d) 5 mg/mL; (e) 10 mg/mL;(f) 15 mg/mL

    Figure  1.  SEM images of PEDOT:PSS/PDMS porous elastomer after loading different concentrations of PEDOT:PSS (a) 0 mg/mL; (b) 1 mg/mL;(c) 3 mg/mL; (d) 5 mg/mL; (e) 10 mg/mL; (f) 15 mg/mL.

    PDMS—polydimethylsiloxane; PEDOT:PSS—Poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate)

    图  2  负载不同浓度MXene的MXene-PEDOT:PSS/PDMS弹性体SEM图. (a) 0 mg/mL; (b) 1 mg/mL; (c) 3 mg/mL; (d) 5 mg/mL; (e) 10 mg/mL; (f) 15 mg/mL

    Figure  2.  SEM images of MXene-PEDOT:PSS/PDMS porous elastomer after loading different concentrations of MXene. (a) 0 mg/mL; (b) 1 mg/mL; (c) 3 mg/mL; (d) 5 mg/mL; (e) 10 mg/mL; (f) 15 mg/mL.

    图  3  多孔PDMS弹性体、PEDOT:PSS/PDMS及MXene-PEDOT:PSS/PDMS复合样品的XRD图谱

    Figure  3.  XRD patterns of PDMS porous elastomer, PEDOT:PSS/PDMS and MXene-PEDOT:PSS/PDMS composted samples

    图  4  PEDOT:PSS/PDMS压阻传感器电流变化率-压强曲线

    Figure  4.  Current change rates vs pressure of PEDOT:PSS/ PDMS piezoresistive sensor

    图  5  MXene-PEDOT:PSS/PDMS压阻传感器电流变化率-压强曲线

    Figure  5.  Current change rates vs pressure of MXene-PEDOT: PSS/PDMS piezoresistive sensor

    图  6  MXene-PEDOT:PSS/PDM压阻传感器: (a) I-V曲线; (b)12 ~48 kPa及(c) 0~44 kPa范围内电流变化率随时间变化曲线; (d) 响应与回复曲线

    Figure  6.  (a) I-V curves, Current change rates vs time of (b) 12 ~48 kPa and (c) 0~44 kPa; (d) response and recovery curves of MXene-PEDOT:PSS/PDM piezoresistive sensor

    图  7  MXene-PEDOT:PSS/PDMS压阻传感器的应用. (a)手指; (b)肘部; (c)膝盖弯曲的响应曲线; (d)~(f)为传感器监测走、跑、跳运动状态的响应曲线

    Figure  7.  Application of MXene-PEDOT:PSS/PDM piezoresistive sensor attached on (a) finger, (b) elbow, (c) knee, (d) walking, (e) running and (f) jumping

    表  1  柔性压阻式压力传感器性能比较

    Table  1.   Performance comparison of flexible piezoresistive sensor

    Materials Detection range/kPa Sensitivity/kPa−1 Response/recovery time/ms Reference
    PDMS@MWCNTs/PP 2-7 16.6 74/64 [18]
    MXene@PDMS 0-40 1.96 40/40 [19]
    CNT/PDMS 0-9.2 5.1 54/65 [20]
    MXene/NWF 15-150 6.31 300/260 [21]
    PANI/BC/CH 0-0.3 1.41 >1000 [22]
    MXene-PEDOT:PSS/PDMS 0-12 14.4 360/600 This work
    Notes: PP-Polypropylene; MWCNT-Multiwall carbon nanotube; NWF-nonwoven fabric; PANI/BC/CH-Polyaniline/bacterial cellulose/chitosan.
    下载: 导出CSV
  • [1] SHI L, LI Z, CHEN M, et al. Ultrasensitive and ultraprecise pressure sensors for soft systems[J]. Advanced Materials, 2023, 35(10): 2210091. doi: 10.1002/adma.202210091
    [2] QU X Y, LI J, HAN Z L, et al. Highly sensitive fiber pressure sensors over a wide pressure range enabled by resistive-capacitive hybrid response[J]. ACS Nano, 2023, 17(15): 14904-14915. doi: 10.1021/acsnano.3c03484
    [3] LIU H, LI Y L, DAI K, et al. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications[J]. Journal of Materials Chemistry C, 2016, 4(1): 157-166. doi: 10.1039/C5TC02751A
    [4] HUANG J R, YANG X X, LIU J T, et al. Vibration monitoring based on flexible multi-walled carbon nanotube/polydimethylsiloxane film sensor and the application on motion signal acquisition[J]. Nanotechnology, 2020, 31(33): 335504. doi: 10.1088/1361-6528/ab8edd
    [5] ARAROMI O A, GRAULE M A, DORSEY K L, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines[J]. Nature, 2020, 587: 219-224. doi: 10.1038/s41586-020-2892-6
    [6] ZHANG X Y, HU Y G, GU H, et al. A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(9): 1900367. doi: 10.1002/admt.201900367
    [7] CHEN S, SONG Y J, XU F. Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34646-34654.
    [8] ZHAO S F, RAN W H, WANG D P, et al. 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 32023-32030.
    [9] CHEN M R, LUO W F, XU Z Q, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays[J]. Nature Communications, 2019, 10: 4024. doi: 10.1038/s41467-019-12030-x
    [10] YANG N, YIN X Y, LIU H L, et al. Dual-layer all-textile flexible pressure sensor coupled by silver nanowires with Ti3C2-Mxene for monitoring athletic motion during sports and transmitting information[J]. ACS Applied Materials & Interfaces, 2023, 15(36): 42992-43002.
    [11] HAMEDI M M, CAMPBELL V E, ROTHEMUND P, et al. Electrically activated paper actuators[J]. Advanced Functional Materials, 2016, 26(15): 2446-2453. doi: 10.1002/adfm.201505123
    [12] JIA P T, ARGUN A A, XU J W, et al. High-contrast electrochromic thin films via layer-by-layer assembly of starlike and sulfonated polyaniline[J]. Chemistry of Materials, 2010, 22(22): 6085-6091. doi: 10.1021/cm101683c
    [13] ZHENG X H, ZHANG S L, ZHOU M J, et al. MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure[J]. Advanced Functional Materials, 2023, 33(19): 2214880. doi: 10.1002/adfm.202214880
    [14] LIU Z R , ZHANG Y L, SONG Y X, et al. A wearable 3D pressure sensor based on electrostatic self-assembly MXene/chitosan sponge and insulating PVP spacer[J]. Nanotechnology, 2023, 34(45): 455502.
    [15] CHEN Y, LIU H S, YU L, et al. Superhydrophobic modification on starch film using PDMS and ball-milled MMT coating[J]. ACS Sustainable Chemistry & Engineering, 2023, 8(28): 10423-10430.
    [16] ZHENG D Y, JIN H H, LIAO Y C, et al. Bi2Te3 nanowires tuning PEDOT: PSS structure for significant enhancing electrical transport property[J]. Materials Letters, 2023, 338: 134019. doi: 10.1016/j.matlet.2023.134019
    [17] LU Z, WEI Y Y, DENG J J, et al. Correction to “self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion”[J]. ACS Nano, 2023, 13(9): 10535-10544.
    [18] LI H B, LUO R B, HU J B, et al. Self-assembled gel-assisted preparation of high-performance hydrophobic PDMS@MWCNTs/PEDOT: PSS composite aerogels for wearable piezoresistive sensors[J]. Journal of Materials Science & Technology, 2024, 182: 22-32.
    [19] CHEN B D, ZHANG L, LI H Q, et al. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection[J]. Journal of Colloid and Interface Science, 2022, 617: 478-488. doi: 10.1016/j.jcis.2022.03.013
    [20] HE Y X, LU X S, WU D Y, et al. CNT/PDMS conductive foam-based piezoresistive sensors with low detection limits, excellent durability, and multifunctional sensing capability[J]. Sensors and Actuators: A. Physical, 2023, 358: 114408.
    [21] YU Q H, SU C L, BI S Y, et al. Ti3C2Tx@nonwoven fabric composite: Promising MXene-coated fabric for wearable piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9632-9643.
    [22] HUANG J Y, LI D E, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366. doi: 10.1016/j.cej.2019.05.136
  • 加载中
计量
  • 文章访问数:  144
  • HTML全文浏览量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2023-12-08
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-01-29

目录

    /

    返回文章
    返回