留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚/薄铺层混杂复合材料低速冲击损伤特征

郑凯东 陈宏达 蔡伟 曹东风 胡海晓 李瑞奇 李书欣

郑凯东, 陈宏达, 蔡伟, 等. 厚/薄铺层混杂复合材料低速冲击损伤特征[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 郑凯东, 陈宏达, 蔡伟, 等. 厚/薄铺层混杂复合材料低速冲击损伤特征[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHENG Kaidong, CHEN Hongda, CAI Wei, et al. Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin- plies[J]. Acta Materiae Compositae Sinica.
Citation: ZHENG Kaidong, CHEN Hongda, CAI Wei, et al. Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin- plies[J]. Acta Materiae Compositae Sinica.

厚/薄铺层混杂复合材料低速冲击损伤特征

基金项目: 国家自然科学基金(52273080);湖北省自然科学基金(20231j0223)
详细信息
    通讯作者:

    曹东风,博士,副研究员,博士生导师,研究方向为先进复合材料计算力学 E-mail: cao_dongf@whut.edu.cn

    李书欣,博士,教授,博士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: lishuxin@whut.edu.cn

  • 中图分类号: TB330.1

Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin- plies

Funds: National Natural Science Foundation of China (52273080); Natural Science Foundation of Hubei Province (20231j0223)
  • 摘要: 厚薄层层级混杂设计时采用多个薄铺层替代单个厚铺层,增加了界面的复杂性。为了研究低速冲击(Low-velocity Impact,LVI)下复合材料结构的厚薄层混杂效应,以准各向同性铺层为基准设计了两种厚薄层混杂层合板,开展了基准层合板和混杂层合板的LVI试验研究;采用超声C扫设备和热揭层方法对含冲击损伤的层合板分别进行了无损和有损检测,基于检测结果对冲击损伤进行了定性和定量的评估;随后,对冲击后压缩(Compression after Impact,CAI)性能和破坏模式进行了分析。试验结果表明:厚薄层混杂设计利用了薄铺层复合材料的损伤抑制特点,提高了复合材料结构的冲击损伤阻抗,减少了分层损伤投影面积和界面分层总面积,缩短了最大单一分层与中性层之间的距离,显著地提高了复合材料结构的CAI强度。该试验研究可为厚薄层混杂结构的优化设计和安全评估提供指导。

     

  • 图  1  成型与无损检测设备

    Figure  1.  Molding and non-destructive testing equipment

    图  2  试验装置:(a)落锤冲击试验设备;(b)夹紧系统;(c)夹紧系统示意图

    Figure  2.  Testing set-up: (a) Drop-weight impact test equipment; (b) Clamping system; (c) Illustration of clamping system

    图  3  CAI试验装置:(a)万能试验机;(b)抗屈曲的CAI夹具;(c)抗屈曲的CAI夹具示意图

    Figure  3.  CAI test equipment: (a) Universal testing machine; (b) CAI fixture with anti-buckling ribs; (c) Schematic illustration of the CAI fixture with anti-buckling ribs

    图  4  CFRP层合板的接触力-时间曲线

    Figure  4.  Contact force-time curves of CFRP laminates

    图  5  CFRP层合板的接触力-位移曲线

    Figure  5.  Contact force-displacement curves of CFRP laminates

    图  6  CFRP层合板的能量-时间曲线

    Figure  6.  Energy-time curves of CFRP laminates

    图  7  CFRP层合板冲击损伤阈值和最大接触力

    Figure  7.  Damage threshold load and the maximum load of CFRP laminates

    图  8  CFRP层合板投影分层轮廓的超声C扫检测结果

    Figure  8.  Projected damage profile of CFRP laminates obtained from C-scan inspection

    图  9  基准层合板A1的逐层损伤图像

    Figure  9.  Layer-by-layer damage images of the baseline laminate A1

    图  10  混杂层合板A2的逐层损伤图像

    Figure  10.  Layer-by-layer damage images of the hybrid laminate A2

    图  11  混杂层合板A3的逐层损伤图像

    Figure  11.  Layer-by-layer damage images of the hybrid laminate A3

    图  12  界面双扇形分层形成机制示意图

    Figure  12.  Schematic of delamination formation mechanism at interfaces

    图  13  CFRP层合板界面分层损伤面积

    Figure  13.  Area of interface delamination of CFRP laminates

    图  14  CFRP层合板CAI强度

    Figure  14.  CAI strengths of CFRP laminated composites

    图  15  CFRP层合板压缩破坏模式

    Figure  15.  Compression failure mode of CFRP laminated composites

    表  1  基本材料参数

    Table  1.   Basic material performance parameters

    Property Value
    Longitudinal modulus, $ E_{11} $/ GPa 127
    Transverse modulus,$ E_{22}=E_{33} $/ GPa 9.9
    Shear modulus, $ G_{12}=G_{13}=G_{23} $/ GPa 4.8
    Major Possion’s ratio, $ v_{12}=v_{13} $ 0.3
    Through-thickness Possion's ratio, $ v_{2 B} $ 0.45
    下载: 导出CSV

    表  2  铺层次序与等效弯曲刚度

    Table  2.   Stacking sequences and equivalent bending stiffness

    Laminate Stacking sequences $ {D^*} $/(N·m) dv/%
    A1 [45/0/−45/90]3s 502.45 0
    A2 [(45/−45)/0/(45/−45)/90]3s 495.69 −1.35
    A3 [45/0/−45/0/90]3s 477.58 −4.95
    Note: $ {d_v} $-Deviation of equivalent flexural stiffness of hybrid laminates A2 and A3 compared with baseline laminate A1.
    下载: 导出CSV
  • [1] 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948.

    CAO Junchao, SUN Jianbo, CAO Yong, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948(in Chinese).
    [2] 张志远, 李伟, 蒋鹏, 等. 碳纤维复合材料层合板低速冲击损伤特性研究[J]. 兵器材料科学与工程, 2021, 44(04): 34-39.

    ZHANG Zhiyuan, LI Wei, JIANG Peng, et al. Damage characteristics of carbon fiber composite laminates under low-velocity impact[J]. Ordnance Material Science and Engineering, 22021, 44(04): 34-39(in Chinese).
    [3] 沈真. 碳纤维复合材料在飞机结构中的应用[J]. 高科技纤维与应用, 2010, 35(4): 1-4. doi: 10.3969/j.issn.1007-9815.2010.04.001

    SHEN Zhen. Application of carbon fiber composites in aircraft structures[J]. Hi-Tech Fiber & Application, 2010, 35(4): 1-4(in Chinese). doi: 10.3969/j.issn.1007-9815.2010.04.001
    [4] 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究[J]. 复合材料学报, 2020, 37(11): 2833-2843.

    WANG Yao, CAO Dongfeng, HU Haixiao, et al. Effect of single-bolt repair on compression capability of carbon/epoxy resin composite laminates containing impact damage: Experimental study[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2833-2843 (in Chinese).
    [5] 钟小丹, 李朝阳, 李念, 等. 复合材料层合板自由边缘冲击失效机制[J]. 复合材料学报, 2023, 40(10): 5932-5946.

    ZHONG Xiaodan, LI Zhaoyang, LI Nian, et al. Failure mechanisms of composite laminate subjected to edge-on impact[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5932-5946(in Chinese).
    [6] CAO D, HU H, WANG Y, et al. Experimental and numerical studies on influence of impact damage and simple bolt repair on compressive failure of composite laminates[J]. Composite Structures, 2021, (4): 114491.
    [7] 俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 40(9): 5359-5370.

    YU Mingming, ZHU Xueli, LIU Xueqiang, et al. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5359-5370(in Chinese).
    [8] LEI Z X, MA J, SUN W K, et al. Low-velocity impact and compression-after-impact behaviors of twill woven carbon fiber/glass fiber hybrid composite laminates with flame retardant epoxy resin[J]. Composite Structures, 2023, 321: 117253. doi: 10.1016/j.compstruct.2023.117253
    [9] 朱笑, 袁丽华. 基于红外热成像的CFRP复合材料低速冲击损伤表征[J]. 复合材料学报, 2022, 39(8): 4164-4171.

    ZHU Xiao, YUAN Lihua. Low-velocity impact damage characterization of CFRP composite based on infrared thermography[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4164-4171(in Chinese).
    [10] 何明昌, 黄春芳, 郑青, 等. 薄铺层层合复合材料研究进展[J]. 玻璃钢/复合材料, 2016, 7(8): 92-98.

    HE Mingchang, HUANG Chunfang, ZHENG Qing, et al. Progress of research on thin-ply laminated composites[J]. FRP/CM, 2016, 7(8): 92-98(in Chinese).
    [11] AMACHER R, CUGNONI J, BOTSIS J, et al. Thin ply composites: Experimental characterization and modeling of size-effects[J]. Composites Science and Technology, 2014, 101: 121-132. doi: 10.1016/j.compscitech.2014.06.027
    [12] HUANG C, JU S, HE M, et al. Identification of failure modes of composite thin-ply laminates containing circular hole under tension by acoustic emission signals[J]. Composite Structures, 2018, 206: 70-79. doi: 10.1016/j.compstruct.2018.08.019
    [13] LOVEJOY A E, SCOTTI S, MILLER S, et al. Characterization of IM7/8552 Thin-ply and Hybrid Thin-ply Composites [C]. AIAA Scitech 2019 Forum. 2019.10. 2514/6.2019-0773
    [14] SIHN S, KIM R, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science and Technology, 2007, 67(6): 996-1008. doi: 10.1016/j.compscitech.2006.06.008
    [15] ZHENG K, HU H, CAO D, et al. Experimental and numerical studies on the tensile behaviors of thin-ply and thick-ply open-hole laminates[J]. Thin-Walled Structures, 2023, 186: 110649. doi: 10.1016/j.tws.2023.110649
    [16] ARTEIRO A, FURTADO C, CATALANOTTI G, et al. Thin-ply polymer composite materials: A review[J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105777. doi: 10.1016/j.compositesa.2020.105777
    [17] YOKOZEKI T, AOKI Y, OGASAWARA T. Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates[J]. Composite Structures, 2008, 82(3): 382-389. doi: 10.1016/j.compstruct.2007.01.015
    [18] YOKOZEKI T, KURODA A, YOSHIMURA A, et al. Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings[J]. Composite Structures, 2010, 93(1): 49-57. doi: 10.1016/j.compstruct.2010.06.016
    [19] WAGIH A, MAIMí P, GONZáLEZ E V, et al. Damage sequence in thin-ply composite laminates under out-of-plane loading[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 66-77. doi: 10.1016/j.compositesa.2016.04.010
    [20] SASIKUMAR A, TRIAS D, COSTA J, et al. Impact and compression after impact response in thin laminates of spread-tow woven and non-crimp fabrics[J]. Composite Structures, 2019, 215: 432-45. doi: 10.1016/j.compstruct.2019.02.054
    [21] GARCíA-RODRíGUEZ S M, COSTA J, BARDERA A, et al. A 3D tomographic investigation to elucidate the low-velocity impact resistance, tolerance and damage sequence of thin non-crimp fabric laminates: effect of ply-thickness[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 53-65. doi: 10.1016/j.compositesa.2018.07.013
    [22] SASIKUMAR A, TRIAS D, COSTA J, et al. Effect of ply thickness and ply level hybridization on the compression after impact strength of thin laminates[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 232-243. doi: 10.1016/j.compositesa.2019.03.022
    [23] ARTEIRO A, CATALANOTTI G, XAVIER J, et al. A strategy to improve the structural performance of non-crimp fabric thin-ply laminates[J]. Composite Structures, 2018, 188: 438-449. doi: 10.1016/j.compstruct.2017.11.072
    [24] SEBAEY T A, GONZáLEZ E V, LOPES C S, et al. Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of ply clustering[J]. Composite Structures, 2013, 106: 96-103. doi: 10.1016/j.compstruct.2013.05.052
    [25] FURTADO C, ARTEIRO A, CATALANOTTI G, et al. Selective ply-level hybridisation for improved notched response of composite laminates[J]. Composite Structures, 2016, 145: 1-14. doi: 10.1016/j.compstruct.2016.02.050
    [26] SEBAEY T A, MAHDI E. Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 86: 31-38. doi: 10.1016/j.compositesa.2016.03.027
    [27] SASIKUMAR A, TRIAS D, COSTA J, et al. Mitigating the weak impact response of thin-ply based thin laminates through an unsymmetrical laminate design incorporating intermediate grade plies[J]. Composite Structures, 2019, 220: 93-104. doi: 10.1016/j.compstruct.2019.03.069
    [28] SASIKUMAR A, COSTA J, TRIAS D, et al. A virtual testing based search for optimum compression after impact strength in thin laminates using ply-thickness hybridization and unsymmetrical designs[J]. Composites Science and Technology, 2020, 196: 108188. doi: 10.1016/j.compscitech.2020.108188
    [29] OLSSON R. Analytical prediction of damage due to large mass impact on thin ply composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 184-191. doi: 10.1016/j.compositesa.2015.02.005
    [30] D7136/D7136M–20 A. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event [S]. West Conshohocken, PA: ASTM International, 2020.
    [31] D7137/D7137M–17 A. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates [S]. West Conshohocken, PA: ASTM International, 2017.
    [32] CAMANHO P P, DáVILA C G, PINHO S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 165-176. doi: 10.1016/j.compositesa.2005.04.023
    [33] CZéL G, REV T, JALALVAND M, et al. Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 104: 151-164. doi: 10.1016/j.compositesa.2017.10.028
    [34] KOHLER S, CUGNONI J, AMACHER R, et al. Transverse cracking in the bulk and at the free edge of thin-ply composites: Experiments and multiscale modelling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105468. doi: 10.1016/j.compositesa.2019.05.036
    [35] CATALANOTTI G. Prediction of in situ strengths in composites: Some considerations[J]. Composite Structures, 2019, 207: 889-893. doi: 10.1016/j.compstruct.2018.09.075
    [36] ABISSET E, DAGHIA F, SUN X C, et al. Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 1 – Experiments[J]. Composite Structures, 2016, 136: 712-726. doi: 10.1016/j.compstruct.2015.09.061
    [37] MOROKOV E, LEVIN V, CHERNOV A, et al. High resolution ply-by-ply ultrasound imaging of impact damage in thick CFRP laminates by high-frequency acoustic microscopy[J]. Composite Structures, 2021, 256: 113102. doi: 10.1016/j.compstruct.2020.113102
    [38] BULL D J, SPEARING S M, SINCLAIR I. Observations of damage development from compression-after-impact experiments using ex situ micro-focus computed tomography[J]. Composites Science and Technology, 2014, 97: 106-114. doi: 10.1016/j.compscitech.2014.04.008
    [39] LIN S, WAAS A M. The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106377. doi: 10.1016/j.compositesa.2021.106377
    [40] 傅惠民, 杨雨松, 张勇波. 含分层损伤国产碳纤维CCF300与T300碳纤维复合材料层合板压缩失效模式[J]. 航空动力学报, 2011, 26(11): 2416-2421.

    FU Huimin, YANG Yusong, ZHANG Yongbo. Failure mode research on CCF300 and T300 carbon fiber composite laminates with delamination under compressive strength[J]. Journal of Aerospace Power, 2011, 26(11): 2416-2421(in Chinese).
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-07-03
  • 录用日期:  2024-07-18
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回