留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向复合材料纤维扭结的平均场仿真

程春 袁志鹏 张琦 宋春雷

程春, 袁志鹏, 张琦, 等. 单向复合材料纤维扭结的平均场仿真[J]. 复合材料学报, 2023, 40(9): 5386-5396. doi: 10.13801/j.cnki.fhclxb.20221123.003
引用本文: 程春, 袁志鹏, 张琦, 等. 单向复合材料纤维扭结的平均场仿真[J]. 复合材料学报, 2023, 40(9): 5386-5396. doi: 10.13801/j.cnki.fhclxb.20221123.003
CHENG Chun, YUAN Zhipeng, ZHANG Qi, et al. Mean-field simulation of kink band formation in unidirectional composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5386-5396. doi: 10.13801/j.cnki.fhclxb.20221123.003
Citation: CHENG Chun, YUAN Zhipeng, ZHANG Qi, et al. Mean-field simulation of kink band formation in unidirectional composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5386-5396. doi: 10.13801/j.cnki.fhclxb.20221123.003

单向复合材料纤维扭结的平均场仿真

doi: 10.13801/j.cnki.fhclxb.20221123.003
详细信息
    通讯作者:

    程春,博士,讲师,硕士生导师,研究方向为复合材料多尺度力学 E-mail:chuncheng@yzu.edu.cn

  • 中图分类号: TB332;TQ327.3

Mean-field simulation of kink band formation in unidirectional composites

  • 摘要: 纤维扭结是单向碳纤维复合材料(UD-CFRP)在受轴向载荷压缩下,由于纤维初始扭转而引起的一种破坏机制。对于此问题,以往的文献中提出了宏观模拟、微观模拟及解析法,但都存在一定的局限性。宏观模拟精度低,微观模拟计算量大,解析法无法进行有效几何分析。在以前的文献中作者开发了一种非线性平均场脱粘模型来研究单向复合材料的非线性力学行为,该模型不仅考虑了平均非对称基体塑性,还考虑了纤维-基体界面的脱粘失效等非线性特性。本文将首次在多尺度层面上进行单向复合材料的纤维扭结仿真。利用扭结模型来定义纤维初始扭转角并结合非线性平均场脱粘模型来研究纤维具有初始扭转角的扭结过程及纤维不同初始扭转角对应力应变响应的影响。结果表明,与其他数值模型及解析模型相比,非线性平均场脱粘模型能够从多尺度的层面达到同等精度但能更高效地预测扭结带的形成过程。

     

  • 图  1  单向碳纤维复合材料(UD-CFRP)力学响应

    Figure  1.  Mechanical response of unidirectional carbon fibre-reinforced polymer (UD-CFRP)

    γ—Fiber torsion angle; β—Kink angle; w—Kink bandwidth

    图  2  具有纤维初始扭转角的UD复合材料及受载后扭结带形成

    Figure  2.  UD composite with initial fibre misalignment and kink-band formation

    l—Length of UD-CFRP before loading; γ0—Initial fiber torsion angle

    图  3  单根纤维上的应力状态

    Figure  3.  Traction on single fibre

    ${\sigma }_{\text{I}}$—Normal stress; $ {\tau }_{\text{1}} $ and $ {\tau }_{\text{2}} $—Shear stresses; t—Stress interface vector; n—First shear direction; $ {\text{s}}_{\text{1}} $ and $ {\text{s}}_{\text{2}} $—Normal directions

    图  4  AS4/8552碳纤维/环氧基UD复合材料试验剪切应力应变和基体的应力-应变曲线

    Figure  4.  Experimental shear stress-strain curve of AS4/8552 UD composite and stress-strain curve of the matrix

    图  5  基体的平均剪切应力-应变和应力-应变曲线及AS4/8552复合材料面内剪切响应曲线

    Figure  5.  Average shear stress-strain, stress-strain curves of the matrix and in-plane shear response of the AS4/8552 composite

    图  6  UD-CFRP在轴向载荷压缩下的有限元模拟

    Figure  6.  Simulation of a UD-CFRP composite under longitudinal compression

    RP—Feference point; U—Displacement; Ur—Rotation degrees of freedom; V1—Longitudinal compressive velocity

    图  7  纤维初始扭转角γ0为2°的AS4/8552复合材料压应力-应变曲线、纤维角度及基体的剪切应力-应变曲线

    Figure  7.  Compression stress-strain curve of AS4/8552 composite with initial fiber torsion angle $ {\text{γ}}_{\text{0}}\text{}\text{=}\text{}\text{2°} $, fibre angle and shear stress-strain curve of the matrix

    图  8  AS4/8552复合材料四个阶段的纤维角度γ((a)~(b))、轴向应力$ {\text{σ}}_{\text{11}} $((c)~(d))、面内剪切应力$ {\text{τ}}_{\text{12}} $((e)~(f))、基体的剪切应力$ {\text{τ}}_{\text{M12}} $((g)~(h))、基体的横向应力$ {\text{σ}}_{\text{M22}} $((i)~(j))和基体的等效塑性应变$ {{e}}_{\text{v}} $图((k)~(l))

    Figure  8.  Contours of AS4/8552 composite with fibre angle γ ((a)-(b)), longitudinal stress $ {\text{σ}}_{\text{11}} $ ((c)-(d)), in-plane shear stress $ {\text{τ}}_{\text{12}} $ ((e)-(f)), shear stress of the matrix $ {\text{τ}}_{\text{M12}} $ ((g)-(h)), transverse stress of matrix $ {\text{σ}}_{\text{M22}} $ ((i)-(j)) and equivalent plastic strain $ {{e}}_{\text{v}} $ ((k)-(l)) of the matrix at the four phases

    图  9  非线性平均场脱粘模型(NMFDM)的模拟结果与其他模型关于AS4/8552复合材料的应力-应变曲线

    Figure  9.  Stress-strain curves of the simulated results of the non-linear mean-field debonding model (NMFDM) with other models regarding compressive of AS4/8552 composite

    图  10  非线性平均场脱粘模型(NMFDM)的模拟结果与其他模型关于AS4/8552复合材料纤维角度-应变曲线

    Figure  10.  Angle-strain curves of the simulated results of the non-linear mean-field debonding model (NMFDM) with other models regarding fibre of AS4/8552 composite

    图  11  AS4/8552复合材料在不同纤维初始扭转角下的压应力-应变曲线

    Figure  11.  Stress-strain curves of AS4/8552 composite under longitudinal with different initial misalignment

    表  1  8552树脂基体材料参数

    Table  1.   Material parameters of the 8552 matrix

    Parameter of the matrix$ {\kappa }_{\text{M}}^{\text{el}} $$ {\kappa }_{\text{M}\text{i}}^{\text{pl}} $
    $ {{E}}_{\text{M}} $/MPa$ {{v}}_{\text{M}} $$ {{Y}}_{\text{0}{i}} $/MPa$ {{H}}_{\text{1}{i}} $/MPa$ {{b}}_{{i}} $$ {{H}}_{\text{2}{i}} $/MPa
    For shear (i=1)3.97×1030.32673525581.78×10−4
    For non-shear (i=2)676025541.75×10−5
    Notes: $ {\kappa }_{\text{M}}^{\text{el}} $ and $ {\kappa }_{\text{M}}^{\text{pl}} $—Elastic set and plastic set of the matrix; $ {{E}}_{\text{M}} $—Modulus of elasticity of the matrix; $ {{v}}_{\text{M}} $—Poisson's ratio of the matrix; $ {{Y}}_{\text{0}} $—Initial yield stress;$ {{H}}_{\text{1}} $ and $ {{H}}_{\text{2}} $—Hardening parameters; b—Material parameter.
    下载: 导出CSV

    表  2  AS4纤维和纤维-基体界面材料参数

    Table  2.   Material parameters of the AS4 fibre and the fibre-matrix interface

    Material parameter$ {{E}}_{\text{F0}} $/MPa$ {{c}}^{\text{F}} $$ {{v}}_{\text{F}} $$ \mu $k$ {\sigma }_{\text{I}}^{\text{cr}} $/MPaα
    $ {\kappa }_{\text{F}} $2.4×10518.70.23
    $ {\kappa }_{\text{I}} $0.410.2122.51.22
    Notes: $ {\kappa }_{\text{F}} $ and $ {\kappa }_{\text{I}} $—Parameters sets of the fibre and the interface; $ {{E}}_{\text{F0}} $—Initial fibre stiffness; $ {{c}}^{\text{F}} $—Constant; $ {{v}}_{\text{F}} $—Poisson's ratio of the fibre; $ \mu $, k—Material parameters; $ {\sigma }_{\text{I}}^{\text{cr}} $—Equivalent interface strength; α—Constant.
    下载: 导出CSV
  • [1] 李景华. 体育运动器材中化工材料的应用及智能化发展分析[J]. 粘接, 2020, 44(11):59-62,66. doi: 10.3969/j.issn.1001-5922.2020.11.015

    LI Jinghua. Analysis on the application and intelligent development of chemical materials in sports equipment[J]. Adhesion,2020,44(11):59-62,66(in Chinese). doi: 10.3969/j.issn.1001-5922.2020.11.015
    [2] 马悦欣. γ-射线辐照对T700碳纤维及其复合材料界面性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    MA Yuexin. Effect of γ-ray irradiation on interfacial properties of T700 carbon fibre and its composites[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [3] 代金. 碳纤维复合材料在航天航空领域的应用[J]. 黑龙江科技信息, 2015(14):37.

    DAI Jin. Application of carbon fibre composites in aerospace field[J]. Glass fibre reinforced plastic,2015(14):37(in Chinese).
    [4] 张小跃. 碳纤维复合材料强度对体育器材耐磨性能的影响[J]. 合成材料老化与应用, 2020, 49(4):160-162,32. doi: 10.16584/j.cnki.issn1671-5381.2020.04.047

    ZHANG Xiaoyue. Influence of strength of carbon fibre composite on wear resistance of sports equipment[J]. Synthetic Materials Aging and Application,2020,49(4):160-162,32(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2020.04.047
    [5] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316. doi: 10.13801/j.cnki.fhclxb.20150211.002

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150211.002
    [6] VOGLER T J, KYRIAKIDES S. On the initiation and growth of kink bands in fiber composites: Part I. experiments[J]. International Journal of Solids and Structures,2001,38(15):2639-2651. doi: 10.1016/S0020-7683(00)00174-8
    [7] WAAS A M, SCHULTHEISZ C R. Compressive failure of composites, part II: Experimental studies[J]. Progress in Aerospace Sciences,1996,32(1):43-78. doi: 10.1016/0376-0421(94)00003-4
    [8] COSTA S, FAGERSTRÖM M, OLSSON R. Development and validation of a finite deformation fibre kinking model for crushing of composites[J]. Composites Science and Technology,2020,197:108236. doi: 10.1016/j.compscitech.2020.108236
    [9] HERRÁEZ M, BERGAN A C, LOPESC S, et al. Computational micromechanics model for the analysis of fiber kinking in unidirectional fiber-reinforced polymers[J]. Mechanics of Materials,2020,142:103299. doi: 10.1016/j.mechmat.2019.103299
    [10] PIMENTA S, GUTKIN R, PINHO S T, et al. A micromechanical model for kink-band formation: Part II-Analytical modelling[J]. Composites Science and Technology,2009,69(7):956-964.
    [11] PUCK A. Strength analysis of fiber-matrix laminate models for practical applications[J]. Materials and Corrosin, 1997, 48(7): 461.
    [12] LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73(2):221-228. doi: 10.1016/j.compstruct.2005.11.062
    [13] CAMANHO P P, BESSA M A, CATALANOTTI G, et al. Modeling the inelastic deformation and fracture of polymer composites - Part II: Smeared crack model[J]. Mechanics of Materials,2013,59:36-49. doi: 10.1016/j.mechmat.2012.12.001
    [14] DU D D, HU Y B, LI H G, et al. Open-hole tensile progressive damage and failure prediction of carbon fiber-reinforced PEEK–titanium laminates[J]. Composites Part B: Engineering,2016,91:65-74. doi: 10.1016/j.compositesb.2015.12.049
    [15] JIN K, WANG H, TAO J E, et al. Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3D constitutive model[J]. Composites PartA: Applied Science and Manufacturing,2019,124:105490. doi: 10.1016/j.compositesa.2019.105490
    [16] 杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典型元件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3): 617-624.

    YANG Qiang, XIE Weihua, MENG Songhe, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 617-624(in Chinese).
    [17] CHENG C, WANG Z, JIN Z, et al. Non-linear mean-field modelling of ud composite laminates accounting for average asymmetric plasticity of the matrix, debonding and progressive failure[J]. Composites Part B: Engineering,2021,224:109209. doi: 10.1016/j.compositesb.2021.109209
    [18] BERGAN A C,GARCEA S C. In-situ observations of longitudinal compression damage in carbon-epoxy cross ply laminates using fast synchrotron radiation computed tomography[C]//American Society for Composites 2017. Lancaster: DEStech Publications Inc., 2017.
    [19] NAYA F, HERRÁEZ M, LOPES C S, et al. Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions[J]. Composites Science and Technology,2017,144:26-35. doi: 10.1016/j.compscitech.2017.03.014
    [20] HILL R. Continuum micro-mechanics of elastoplastic polycrystals[J]. Journal of the Mechanics and Physics of Solids,1965,13(2):89-101. doi: 10.1016/0022-5096(65)90023-2
    [21] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica,1973,21(5):571-574. doi: 10.1016/0001-6160(73)90064-3
    [22] CHENG C, MAHNKEN R. A multi-mechanism model for cutting simulation: A Ginzburg-Landau type phase gradient and numerical implementations[J]. International Journal of Solids and Structures,2019,160:1-17. doi: 10.1016/j.ijsolstr.2018.10.007
    [23] MARLETT K, TOMBLIN J, HOOPER E, et al. Hexcel 8552 AS4 unidirectional prepreg at 190 gsm & 35% RC qualification material property data report, CAM-RP-2010-002[R]. Wichita State University: NASA, 2011.
    [24] RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation[J]. Acta Materialia,2012,60(9):3953-3964. doi: 10.1016/j.actamat.2012.03.027
    [25] HSU S Y, VOGLER T J, KYRIAKIDES S. Compressive strength predictions for fiber composites[J]. Journal of Applied Mechanics,1998,65(1):7-16. doi: 10.1115/1.2789050
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  208
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2022-11-07
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回