Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation
-
摘要: 为研究不同密度和纤维掺量的玄武岩纤维泡沫混凝土(BFRFC)的孔隙特征与单轴压缩力学性能,本文对两种密度下三种纤维掺量的试样进行X-CT与单轴压缩试验,分析实测孔隙和纤维分布特征,利用Matlab软件二次开发了BFRFC微观结构的三维重构模型,基于Hashin失效准则和损伤变量建立BFRFC的渐进损伤模型,并采用Comsol有限元软件进行单轴压缩试验仿真模拟。研究发现,BFRFC的孔隙直径服从对数正态分布,孔隙率和平均孔径随着密度的增加及纤维掺量的增多而减小;BFRFC内部的纤维极角主要集中在15°~90°之间,而方位角则在0°~360°之间均匀分布;基于微观结构所建立的BFRFC试样仿真模型,结合材料软化特性的渐进损伤模型,可以有效模拟BFRFC单轴压缩过程;BFRFC中玄武岩纤维的添加显著提升了材料的力学性能,包括峰值强度和吸能能力,且单轴压缩过程中材料内部力学响应从外层向内层进行逐层传递。Abstract: To explore the pore characteristics and uniaxial compression mechanical properties of basalt fiber reinforced foam concrete (BFRFC) with varied densities and fiber mixtures, this study carries out X-ray computed tomography (X-CT) and uniaxial compression tests on samples featuring three types of fiber mixtures at two different densities. It examines the pore and fiber distribution within these samples and leverages MATLAB to develop a three-dimensional reconstruction model of BFRFC's microstructure. Additionally, a progressive damage model, grounded in Hashin's failure criteria and damage variables, has been formulated. The uniaxial compression test simulations were executed using Comsol's finite element software. The findings indicate that BFRFC's pore diameter follows a lognormal distribution. Notably, both porosity and average pore diameter exhibit a decrease with increasing density and fibre content; within BFRFC, the polar angle of the fibers predominantly ranges from 15° to 90°, whereas the azimuthal angle is uniformly distributed across 0° to 360°. The microstructure-based simulation model of BFRFC, integrated with the progressive damage model that accounts for the material's softening characteristics, proves effective in simulating the material's progressive damage. Furthermore, the microstructure-based simulation model, when coupled with the progressive damage model that considers the softening traits of the material, accurately simulates the uniaxial compression behavior of BFRFC. The incorporation of basalt fibers into BFRFC notably enhances its mechanical properties, such as peak strength and energy absorption capacity. Moreover, during the uniaxial compression process, the material's mechanical response is progressively relayed from the outer to the inner layers, enhancing its structural integrity and resilience.
-
Key words:
- basalt fiber reinforced foam concrete /
- microstructure /
- X-CT /
- Comsol /
- pore structure /
- mechanical simulation
-
图 9 BFRFC材料本构关系
Figure 9. BFRFC material ontological relationship
Point A represents the onset of material damage, point B corresponds to the damage state at any given moment, and point C represents the moment when the material is completely degraded; Ei0 and Eid denotes the initial elastic modulus and the hardening modulus of the material after yielding. εeq0, εeq and εeqf represents the yield strain, strain, and ultimate strain
表 1 玄武岩纤维增强泡沫混凝土的配合比及密度(kg/m3)
Table 1. Mix ratio and density of basalt fiber reinforced foam concrete (kg/m3)
Sample No. Cement Water Basalt fiber Foam Wet density Dry density A08-0 416.67 208.33 0 35.49 944.31 868.03 A08-0.15% 416.67 208.33 4.2 35.49 959.33 840.00 A08-0.30% 416.67 208.33 8.4 35.49 1002.33 891.33 A08-0.45% 416.67 208.33 12.6 35.49 965.33 846.00 A10-0 743.05 371.53 0 21.83 1187.60 1075.05 A10-0.15% 743.05 371.53 4.2 21.83 1240.33 1138.00 A10-0.30% 743.05 371.53 8.4 21.83 1226.00 1073.00 A10-0.45% 743.05 371.53 12.6 21.83 1235.67 1131.33 Notes: Sample number A08-0.15% represents the design of dry density of 800 kg/m3 and the volume of basalt fiber mixed with 0.15%. 表 2 各组玄武岩纤维增强泡沫混凝土的孔隙率(%)
Table 2. Porosity (%) of each group basalt fiber reinforced foam concrete
Density grade Fiber content X-CT analysis Saturated water absorption A08 0 15.43 15.87 0.15% 14.91 15.29 0.30% 14.44 14.84 0.45% 14.02 13.75 A10 0 10.94 11.51 0.15% 10.39 10.45 0.30% 10.54 10.92 0.45% 9.93 10.75 表 3 BFRFC代表试样的孔隙尺寸特征
Table 3. Pore size features of representative BFRFC specimens
Sample No. Fiber content Porosity/% Pore diameter/μm Distribution parameters Max Min Average $\mu $ $\sigma $ A08 0 15.43 4480.61 44.54 425.15 5.99 0.34 0.15% 14.91 4503.13 44.54 437.94 5.98 0.37 0.30% 14.44 4534.57 44.54 447.85 6.11 0.34 0.45% 14.02 4556.17 44.54 458.14 6.03 0.40 A10 0 10.94 3000.06 44.54 244.18 5.71 0.29 0.15% 10.39 3035.25 44.54 245.92 5.66 0.30 0.30% 10.54 3094.54 44.54 294.85 5.75 0.27 0.45% 9.93 3136.87 44.54 307.14 5.77 0.32 Notes: The minimum pore diameter of the measured BFRFC specimens is 44.54 μm due to the limitation of testing accuracy and resolution of the X-CT equipment. In fact, the minimum pore diameter of each specimen should be less than 44.54 μm and different from each other 表 4 计算机性能表
Table 4. Computer Performance Specifications
Component Specifications Processor (CPU) AMD Ryzen Threadripper 3990 X<br> 32 cores / 64 threads<br> Base frequency :
3.7 GHz<br>Max boost frequency: 4.5 GHzGraphics Processor (GPU) NVIDIA RTX 4090<br>VRAM: 24 GB GDDR6 X Memory (RAM) 256 GB DDR4 ECC<br>Frequency: 3200 MHz Primary Storage 2 TB NVMe SSD (Samsung 980 PRO) Secondary Storage 4 TB NVMe SSD (Samsung 970 EVO Plus) Mass Storage 10 TB HDD (Seagate IronWolf Pro) Operating System Windows 11 Pro or Ubuntu 22.04 LTS Motherboard ASUS ROG Zenith II Extreme Alpha<br>Supports multiple GPU slots (PCIe 4.0)<br>8 DIMM slots<br>USB 3.2<br>Wi-Fi 6<br>10 G Ethernet 表 5 三维Hashin失效准则判断标准
Table 5. Three-dimensional Hashin Failure Criteria
Failure mode Standard of judgment Fiber tension ${\hat \sigma _{11}} \geqslant 0$ $F_{\text{f}}^{\text{t}} = {\left( {\dfrac{{{{\hat \sigma }_{11}}}}{{{X^{\text{T}}}}}} \right)^2} + \alpha {\left( {\dfrac{{{{\hat \tau }_{12}}}}{{{S^{\text{L}}}}}} \right)^2} \leqslant 1$ Fiber compression${\hat \sigma _{11}} < 0$ $F_{\text{f}}^{\text{c}} = {\left( {\dfrac{{{{\hat \sigma }_{11}}}}{{{X^{\text{C}}}}}} \right)^2} \leqslant 1$ Cement matrix tension ${\hat \sigma _{22}} \geqslant 0$ $F_{\text{m}}^{\text{t}} = {\left( {\dfrac{{{{\hat \sigma }_{22}}}}{{{Y^{\text{T}}}}}} \right)^2} + {\left( {\dfrac{{{{\hat \tau }_{12}}}}{{{S^{\text{L}}}}}} \right)^2} \leqslant 1$ Cement matrix compression ${\hat \sigma _{22}} < 0$ $F_{\text{m}}^{\text{c}} = {\left( {\dfrac{{{{\hat \sigma }_{22}}}}{{2{S^{\text{T}}}}}} \right)^2} + \left[ {{{\left( {\dfrac{{{Y^{\text{C}}}}}{{2{S^{\text{T}}}}}} \right)}^2} - 1} \right] \cdot \dfrac{{{{\hat \sigma }_{22}}}}{{{Y^{\text{C}}}}} + {\left( {\dfrac{{{{\hat \tau }_{22}}}}{{{S^{\text{L}}}}}} \right)^2} \leqslant 1$ Notes:$X_{\text{T}}^{}$ and ${X_{\text{C}}}$ represent the longitudinal tensile and compressive strengths, respectively; ${Y_{\text{T}}}$and ${T_{\text{C}}}$ denote the transverse tensile and compressive strengths of the specimen, respectively; ${S_{\text{L}}}$and${S_{\text{T}}}$ are the longitudinal and transverse shear strengths of the specimen, respectively; $\alpha $ is the coefficient of contribution of shear stress to fiber tension ($0 \leqslant \alpha \leqslant 1$); $\hat \sigma $ is the assessment coefficient for material damage. 表 6 各类损伤变量
Table 6. Impairment variables by category
Damage pattern Value of the damage variable Fiber material damage $D{}_1 = \phi \left( {\max \left\{ {F_{\text{f}}^{\text{t}},F_{\text{f}}^{\text{c}}} \right\}{\text{ }}} \right)$ Cement matrix damage $D{}_2 = \phi \left( {\max \left\{ {F_{\text{m}}^{\text{t}},F_{\text{m}}^{\text{c}}} \right\}{\text{ }}} \right)$ Composite shear damage ${D_3} = 1 - (1 - {D_1})(1 - {D_2})$ 表 7 各BFRFC试样的峰值强度差异(MPa)
Table 7. Differences in peak strength of each BFRFC specimen (MPa)
Density grade Fiber content Simulation results Actual results Absolute error Relative error A08 0.15% 4.17 4.01 0.16 3.99% 0.30% 5.02 5.50 0.48 8.73% 0.45% 6.36 6.59 0.23 3.49% A10 0.15% 7.44 7.04 0.40 5.68% 0.30% 8.12 8.33 0.21 2.52% 0.45% 10.59 11.18 0.59 5.25% -
[1] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730. doi: 10.3969/j.issn.1007-9629.2023.07.004GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.004 [2] CHEN J L, CHEN B, CHEN X D, et al. Study on pore structure of foamed cement paste by multi-approach synergetics[J]. Construction and Building Materials, 2023, 362. [3] 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J/OL][J]. 复合材料学报, 2024, 41(2): 827-838.GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838(in Chinese). [4] 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127.YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127(in Chinese). [5] 袁志颖, 陈波, 黄梓莘, 等. 基于细观数值模拟的泡沫混凝土热学性能研究[J]. 水电能源科学, 2022, 40(09): 167-171.YUAN Zhiying. , CHEN Bo. , HUANG Zixin, et al. Research on termal prformance of famed concrete based on mesoscale numerical Simulation[J]. Water Resources and Power. 2022, 40(09): 167-171(in Chinese). [6] CHEN D, YAO Y, WANG H, et al. Experiment research on thermal performance of foam concrete wall[C]. International Conference on Advanced Engineering Materials and Architecture Science (ICAEMAS 2014), 2014: 609-613. [7] LI T, HUANG F, ZHU J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Construction and Building Materials, 2020, 231. [8] WANG H. Development and application of the light ceramsite foam concrete insulation block[C]. 2nd International Conference on Energy, Environment and Sustainable Development (EESD 2012), 2012: 1690-1697. [9] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410.SONG Qiang, ZHANG Peng, BAO Jjiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410(in Chinese). [10] LIU P, GONG Y, TIAN G, et al. Preparation and experimental study on the thermal characteristics of lightweight prefabricated nano-silica aerogel foam concrete wallboards[J]. Construction and Building Materials, 2021, 272: 121895. doi: 10.1016/j.conbuildmat.2020.121895 [11] 方永浩, 王锐, 庞二波, 等. 水泥–粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报, 2010, 38(4): 621-626.FANG Yonghao, WANG Rui, PANG Erbo, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 621-626(in Chinese). [12] 王武斌, 赵文辉, 苏谦, 等. 聚丙烯纤维增强泡沫轻质混凝土力学性能试验研究[J]. 铁道建筑, 2017, (2): 146-150. doi: 10.3969/j.issn.1003-1995.2017.02.36WANG Wubin, ZHAO Wenhui, SU Qian, et al. Experimental study on mechanical performance of foamed light[J]. Railway Engineering, 2017, (2): 146-150(in Chinese). doi: 10.3969/j.issn.1003-1995.2017.02.36 [13] 余其俊, 林秋旺, 李方贤, 等. 硅酸钙板-纤维增强泡沫混凝土复合墙板的受压性能[J]. 华南理工大学学报(自然科学版), 2017, 45(9): 88-95.YU Qijun, LIN Qiuwang, LI Fangxian, et al. Structure performance of calcium silicate board/fiber-reinforced foamed concrete sandwich panel under compression[J]. Journal of South China University of Technology (Natural Science), 2017, 45(9): 88-95(in Chinese). [14] PAKRAVAN H, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers[J]. Construction and Building Materials, 2016, 112. [15] 赵星. 玄武岩纤维增强泡沫混凝土保温材料的制备及性能研究[D]. 西南科技大学, 2014.ZHAO Xing. Preparation and performance study of basalt fiber reinforced foam concrete insulation material [D]. Southwest University of Science and Technology, 2014 (in Chinese). [16] 程新. 玄武岩纤维泡沫混凝土抗裂性能研究[D]. 合肥工业大学, 2018.CHEN Xin. Research on the anti-cracking property of basalt fiber foam concrete [D]. Hefei University of Technology, 2018 (in Chinese). [17] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. doi: 10.11896/cldb.19010130WANG Jingwen, WANG Wei. Response Surface Based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports, 2019, 33(24): 4092-4097 (in Chinese). doi: 10.11896/cldb.19010130 [18] GENCEL O, NODEHI M, BAYRAKTAR O Y, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326. [19] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.WANG Xiaojuan, CUI Hhaoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585 (in Chinese). [20] 王丹薇. 常用纤维对水工泡沫混凝土物理力学性能的影响研究[J]. 吉林水利, 2022, (3): 10-13+18. doi: 10.3969/j.issn.1009-2846.2022.03.004WANG Danwei. Study on the influence of common fibers on the physical and mechanical properties of hydraulic foam concrete[J]. Jilin Water Resources, 2022, (3): 10-13+18(in Chinese). doi: 10.3969/j.issn.1009-2846.2022.03.004 [21] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T266−2011[S]. 北京: 中国标准出版社, 2011.Ministry of Housing and Urban-Rural Development, People's Republic of China. Foam concrete [S]. Beijing: China Standard Press, 2011(in Chinese). [22] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1): 93-98. doi: 10.3969/j.issn.1007-9629.2017.01.017PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1): 93-98(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.01.017 [23] 王凯, 付强, 徐超, 等. 考虑射束硬化的煤岩CT数据阈值分割方法及应用[J]. 煤田地质与勘探, 2023, 51(4): 11-22. doi: 10.12363/issn.1001-1986.22.08.0641WANG Kai, FU Qiang, XU Chao, et al. Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application[J]. Coal Geology & Exploration, 2023, 51(4): 11-22(in Chinese). doi: 10.12363/issn.1001-1986.22.08.0641 [24] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, (3): 262-270.WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, (3): 262-270(in Chinese). [25] 李相国, 刘敏, 马保国, 等. 孔结构对泡沫混凝土性能的影响与控制技术[J]. 材料导报, 2012, 26(7): 141-144+153. doi: 10.3969/j.issn.1005-023X.2012.07.030LI Xiangguo, LIU Min, MA Baoguo, et al. Influence of pore structure on foam concrete and controlling method[J]. Materials Reports, 2012, 26(7): 141-144+153(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.07.030 [26] 张亚梅, 孙超, 王申, 等. 不同密度等级泡沫混凝土的性能和孔结构[J]. 重庆大学学报, 2020, 43(8): 54-63.ZHANG Yamei, SUN Chao, WANG Shen, et al. Properties and pore structure of foam concrete with different density[J]. Journal of Chongqing University, 2020, 43(8): 54-63(in Chinese). [27] 周程涛, 陈波, 高志涵, 等. 考虑异形孔的泡沫混凝土单轴压缩离散元模拟[J/OL]. 复合材料学报: 1-11.ZHOU Chengtao, CHEN Bo, GAO Zhihan, et al. Discrete element simulation of foam concrete under uniaxial compression considering non-spherical pores[J/OL]. Acta Materiae Compositae Sinica, 1-11(in Chinese). [28] 于洋. 对数正态分布的几个性质及其参数估计[J]. 廊坊师范学院学报(自然科学版), 2011, 11(5): 8-11.YU Yang. Several properties of the lognormal distribution and estimation of its parameters[J]. Journal of Langfang Normal University(Natural Science Edition), 2011, 11(5): 8-11(in Chinese). [29] HAO Y, HAO H, LI Z. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60: 82-106. doi: 10.1016/j.ijimpeng.2013.04.008 [30] KOLOOR S, KARIMZADEH A, YIDRIS N, et al. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model[J]. Polymers, 2020, 12(1). [31] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664 [32] KHAN S, KOLOOR S, JYE W, et al. A fatigue model to predict interlaminar damage of FRP Composite Laminates Subjected to Mode I Load[J]. Polymers, 2023, 15(3). [33] WANG F, JIN X, WANG X, et al. Numerical investigation on the influences of processing conditions on damage in the CFRTP cutting using a novel elastic-plastic damage model[J]. Applied Composite Materials, 2022, 29(5): 2063-2094. doi: 10.1007/s10443-022-10041-4 [34] MATZENMILLER A, LUBLINER J, TAYLOR R. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2): 125-152. doi: 10.1016/0167-6636(94)00053-0 [35] 吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1): 94-104. doi: 10.6052/0459-1879-13-106WU Yitao, YAO Weixing, WU Fuqiang. CDM model for intralaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 94-104 (in Chinese). doi: 10.6052/0459-1879-13-106 [36] 高真, 曹鹏, 孙新建, 等. 玄武岩纤维混凝土抗压强度分析与微观表征[J]. 水力发电学报, 2018, 37(8): 111-120. doi: 10.11660/slfdxb.20180812GAO Zhen, CAO Peng, SUN Xinjian, et al. Compressive strength analysis and microscopic characterization of basalt fiber reinforced concrete[J]. Journal of Hydroelectric Engineering, 2018, 37(8): 111-120 (in Chinese) doi: 10.11660/slfdxb.20180812
计量
- 文章访问数: 93
- HTML全文浏览量: 64
- 被引次数: 0