留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能

郭凌云 陈波 高志涵 缪云 牛瀚仪

郭凌云, 陈波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 郭凌云, 陈波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J]. 复合材料学报, 2024, 42(0): 1-15.
GUO Lingyun, CHEN Bo, GAO Zhihan, et al. Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation[J]. Acta Materiae Compositae Sinica.
Citation: GUO Lingyun, CHEN Bo, GAO Zhihan, et al. Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation[J]. Acta Materiae Compositae Sinica.

基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能

基金项目: 国家自然科学基金项目(52079049; 52239009);国家重点实验室基本科研业务费(522012272);国家资助博士后项目(GZC20230671); 江苏省卓越博士后项目(2023ZB703)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528; TB332

Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation

Funds: General Program of National Natural Science Foundation of China (52079049; 52239009); Basic Scientific Research Business Expenses of National Key Laboratories (522012272); National Funded Postdoctoral Program (GZC20230671); Jiangsu Province Outstanding Postdoctoral Program (2023ZB703)
  • 摘要: 为研究不同密度和纤维掺量的玄武岩纤维泡沫混凝土(BFRFC)的孔隙特征与单轴压缩力学性能,本文对两种密度下三种纤维掺量的试样进行X-CT与单轴压缩试验,分析实测孔隙和纤维分布特征,利用Matlab软件二次开发了BFRFC微观结构的三维重构模型,基于Hashin失效准则和损伤变量建立BFRFC的渐进损伤模型,并采用Comsol有限元软件进行单轴压缩试验仿真模拟。研究发现,BFRFC的孔隙直径服从对数正态分布,孔隙率和平均孔径随着密度的增加及纤维掺量的增多而减小;BFRFC内部的纤维极角主要集中在15°~90°之间,而方位角则在0°~360°之间均匀分布;基于微观结构所建立的BFRFC试样仿真模型,结合材料软化特性的渐进损伤模型,可以有效模拟BFRFC单轴压缩过程;BFRFC中玄武岩纤维的添加显著提升了材料的力学性能,包括峰值强度和吸能能力,且单轴压缩过程中材料内部力学响应从外层向内层进行逐层传递。

     

  • 图  1  试验材料

    Figure  1.  Experimental materials

    图  2  X-CT数据处理过程

    Figure  2.  X-CT data processing

    图  3  不同BFRFC试样的孔径分布特征

    Figure  3.  Features of pore size distribution for different BFRFC specimens

    图  4  各密度等级BFRFC的孔隙形状特征统计

    Figure  4.  Statistics of BFRFC pore shape characteristics for each density class

    图  5  BFRFC中玄武岩纤维的空间分布情况

    Figure  5.  Space distribution of basalt fibers in BFRFC

    图  6  参数控制的BFRFC建模流程及结果示意

    Figure  6.  Parameter-controlled BFRFC modeling process and results

    图  7  BFRFC数值模型的网格划分示意图

    Figure  7.  Schematic mesh delineation of the numerical model of BFRFC

    图  8  BFRFC单轴压缩仿真示意图

    Figure  8.  BFRFC uniaxial compression simulation schematic

    图  9  BFRFC材料本构关系

    Figure  9.  BFRFC material ontological relationship

    Point A represents the onset of material damage, point B corresponds to the damage state at any given moment, and point C represents the moment when the material is completely degraded; Ei0 and Eid denotes the initial elastic modulus and the hardening modulus of the material after yielding. εeq0, εeq and εeqf represents the yield strain, strain, and ultimate strain

    图  10  各BFRFC试样的应力-应变关系曲线

    Figure  10.  Stress-strain relationship curves for each BFRFC specimen

    图  11  A08和A10试样的吸能情况

    Figure  11.  Energy absorption of specimens A08 and A10

    图  12  BFRFC单轴压缩结果示意图

    Figure  12.  Schematic diagram of BFRFC uniaxial compression results

    图  13  BFRFC探针位置应力值变化情况

    Figure  13.  Variation of stress value at probe position of BFRFC

    表  1  玄武岩纤维增强泡沫混凝土的配合比及密度(kg/m3)

    Table  1.   Mix ratio and density of basalt fiber reinforced foam concrete (kg/m3)

    Sample No. Cement Water Basalt fiber Foam Wet density Dry density
    A08-0 416.67 208.33 0 35.49 944.31 868.03
    A08-0.15% 416.67 208.33 4.2 35.49 959.33 840.00
    A08-0.30% 416.67 208.33 8.4 35.49 1002.33 891.33
    A08-0.45% 416.67 208.33 12.6 35.49 965.33 846.00
    A10-0 743.05 371.53 0 21.83 1187.60 1075.05
    A10-0.15% 743.05 371.53 4.2 21.83 1240.33 1138.00
    A10-0.30% 743.05 371.53 8.4 21.83 1226.00 1073.00
    A10-0.45% 743.05 371.53 12.6 21.83 1235.67 1131.33
    Notes: Sample number A08-0.15% represents the design of dry density of 800 kg/m3 and the volume of basalt fiber mixed with 0.15%.
    下载: 导出CSV

    表  2  各组玄武岩纤维增强泡沫混凝土的孔隙率(%)

    Table  2.   Porosity (%) of each group basalt fiber reinforced foam concrete

    Density grade Fiber content X-CT analysis Saturated water absorption
    A08 0 15.43 15.87
    0.15% 14.91 15.29
    0.30% 14.44 14.84
    0.45% 14.02 13.75
    A10 0 10.94 11.51
    0.15% 10.39 10.45
    0.30% 10.54 10.92
    0.45% 9.93 10.75
    下载: 导出CSV

    表  3  BFRFC代表试样的孔隙尺寸特征

    Table  3.   Pore size features of representative BFRFC specimens

    Sample No.Fiber contentPorosity/%Pore diameter/μmDistribution parameters
    MaxMinAverage$\mu $$\sigma $
    A08015.434480.6144.54425.155.990.34
    0.15%14.914503.1344.54437.945.980.37
    0.30%14.444534.5744.54447.856.110.34
    0.45%14.024556.1744.54458.146.030.40
    A10010.943000.0644.54244.185.710.29
    0.15%10.393035.2544.54245.925.660.30
    0.30%10.543094.5444.54294.855.750.27
    0.45% 9.933136.8744.54307.145.770.32
    Notes: The minimum pore diameter of the measured BFRFC specimens is 44.54 μm due to the limitation of testing accuracy and resolution of the X-CT equipment. In fact, the minimum pore diameter of each specimen should be less than 44.54 μm and different from each other
    下载: 导出CSV

    表  4  计算机性能表

    Table  4.   Computer Performance Specifications

    Component Specifications
    Processor (CPU) AMD Ryzen Threadripper 3990 X<br> 32 cores / 64 threads<br> Base frequency :
    3.7 GHz<br>Max boost frequency: 4.5 GHz
    Graphics Processor (GPU) NVIDIA RTX 4090<br>VRAM: 24 GB GDDR6 X
    Memory (RAM) 256 GB DDR4 ECC<br>Frequency: 3200 MHz
    Primary Storage 2 TB NVMe SSD (Samsung 980 PRO)
    Secondary Storage 4 TB NVMe SSD (Samsung 970 EVO Plus)
    Mass Storage 10 TB HDD (Seagate IronWolf Pro)
    Operating System Windows 11 Pro or Ubuntu 22.04 LTS
    Motherboard ASUS ROG Zenith II Extreme Alpha<br>Supports multiple GPU slots (PCIe 4.0)<br>8 DIMM slots<br>USB 3.2<br>Wi-Fi 6<br>10 G Ethernet
    下载: 导出CSV

    表  5  三维Hashin失效准则判断标准

    Table  5.   Three-dimensional Hashin Failure Criteria

    Failure mode Standard of judgment
    Fiber tension ${\hat \sigma _{11}} \geqslant 0$ $F_{\text{f}}^{\text{t}} = {\left( {\dfrac{{{{\hat \sigma }_{11}}}}{{{X^{\text{T}}}}}} \right)^2} + \alpha {\left( {\dfrac{{{{\hat \tau }_{12}}}}{{{S^{\text{L}}}}}} \right)^2} \leqslant 1$
    Fiber compression${\hat \sigma _{11}} < 0$ $F_{\text{f}}^{\text{c}} = {\left( {\dfrac{{{{\hat \sigma }_{11}}}}{{{X^{\text{C}}}}}} \right)^2} \leqslant 1$
    Cement matrix tension ${\hat \sigma _{22}} \geqslant 0$ $F_{\text{m}}^{\text{t}} = {\left( {\dfrac{{{{\hat \sigma }_{22}}}}{{{Y^{\text{T}}}}}} \right)^2} + {\left( {\dfrac{{{{\hat \tau }_{12}}}}{{{S^{\text{L}}}}}} \right)^2} \leqslant 1$
    Cement matrix compression ${\hat \sigma _{22}} < 0$ $F_{\text{m}}^{\text{c}} = {\left( {\dfrac{{{{\hat \sigma }_{22}}}}{{2{S^{\text{T}}}}}} \right)^2} + \left[ {{{\left( {\dfrac{{{Y^{\text{C}}}}}{{2{S^{\text{T}}}}}} \right)}^2} - 1} \right] \cdot \dfrac{{{{\hat \sigma }_{22}}}}{{{Y^{\text{C}}}}} + {\left( {\dfrac{{{{\hat \tau }_{22}}}}{{{S^{\text{L}}}}}} \right)^2} \leqslant 1$
    Notes:$X_{\text{T}}^{}$ and ${X_{\text{C}}}$ represent the longitudinal tensile and compressive strengths, respectively; ${Y_{\text{T}}}$and ${T_{\text{C}}}$ denote the transverse tensile and compressive strengths of the specimen, respectively; ${S_{\text{L}}}$and${S_{\text{T}}}$ are the longitudinal and transverse shear strengths of the specimen, respectively; $\alpha $ is the coefficient of contribution of shear stress to fiber tension ($0 \leqslant \alpha \leqslant 1$); $\hat \sigma $ is the assessment coefficient for material damage.
    下载: 导出CSV

    表  6  各类损伤变量

    Table  6.   Impairment variables by category

    Damage patternValue of the damage variable
    Fiber material damage$D{}_1 = \phi \left( {\max \left\{ {F_{\text{f}}^{\text{t}},F_{\text{f}}^{\text{c}}} \right\}{\text{ }}} \right)$
    Cement matrix damage$D{}_2 = \phi \left( {\max \left\{ {F_{\text{m}}^{\text{t}},F_{\text{m}}^{\text{c}}} \right\}{\text{ }}} \right)$
    Composite shear damage${D_3} = 1 - (1 - {D_1})(1 - {D_2})$
    下载: 导出CSV

    表  7  各BFRFC试样的峰值强度差异(MPa)

    Table  7.   Differences in peak strength of each BFRFC specimen (MPa)

    Density grade Fiber content Simulation results Actual results Absolute error Relative error
    A08 0.15% 4.17 4.01 0.16 3.99%
    0.30% 5.02 5.50 0.48 8.73%
    0.45% 6.36 6.59 0.23 3.49%
    A10 0.15% 7.44 7.04 0.40 5.68%
    0.30% 8.12 8.33 0.21 2.52%
    0.45% 10.59 11.18 0.59 5.25%
    下载: 导出CSV
  • [1] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730. doi: 10.3969/j.issn.1007-9629.2023.07.004

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.004
    [2] CHEN J L, CHEN B, CHEN X D, et al. Study on pore structure of foamed cement paste by multi-approach synergetics[J]. Construction and Building Materials, 2023, 362.
    [3] 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J/OL][J]. 复合材料学报, 2024, 41(2): 827-838.

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838(in Chinese).
    [4] 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127.

    YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127(in Chinese).
    [5] 袁志颖, 陈波, 黄梓莘, 等. 基于细观数值模拟的泡沫混凝土热学性能研究[J]. 水电能源科学, 2022, 40(09): 167-171.

    YUAN Zhiying. , CHEN Bo. , HUANG Zixin, et al. Research on termal prformance of famed concrete based on mesoscale numerical Simulation[J]. Water Resources and Power. 2022, 40(09): 167-171(in Chinese).
    [6] CHEN D, YAO Y, WANG H, et al. Experiment research on thermal performance of foam concrete wall[C]. International Conference on Advanced Engineering Materials and Architecture Science (ICAEMAS 2014), 2014: 609-613.
    [7] LI T, HUANG F, ZHU J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Construction and Building Materials, 2020, 231.
    [8] WANG H. Development and application of the light ceramsite foam concrete insulation block[C]. 2nd International Conference on Energy, Environment and Sustainable Development (EESD 2012), 2012: 1690-1697.
    [9] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410.

    SONG Qiang, ZHANG Peng, BAO Jjiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410(in Chinese).
    [10] LIU P, GONG Y, TIAN G, et al. Preparation and experimental study on the thermal characteristics of lightweight prefabricated nano-silica aerogel foam concrete wallboards[J]. Construction and Building Materials, 2021, 272: 121895. doi: 10.1016/j.conbuildmat.2020.121895
    [11] 方永浩, 王锐, 庞二波, 等. 水泥–粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报, 2010, 38(4): 621-626.

    FANG Yonghao, WANG Rui, PANG Erbo, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 621-626(in Chinese).
    [12] 王武斌, 赵文辉, 苏谦, 等. 聚丙烯纤维增强泡沫轻质混凝土力学性能试验研究[J]. 铁道建筑, 2017, (2): 146-150. doi: 10.3969/j.issn.1003-1995.2017.02.36

    WANG Wubin, ZHAO Wenhui, SU Qian, et al. Experimental study on mechanical performance of foamed light[J]. Railway Engineering, 2017, (2): 146-150(in Chinese). doi: 10.3969/j.issn.1003-1995.2017.02.36
    [13] 余其俊, 林秋旺, 李方贤, 等. 硅酸钙板-纤维增强泡沫混凝土复合墙板的受压性能[J]. 华南理工大学学报(自然科学版), 2017, 45(9): 88-95.

    YU Qijun, LIN Qiuwang, LI Fangxian, et al. Structure performance of calcium silicate board/fiber-reinforced foamed concrete sandwich panel under compression[J]. Journal of South China University of Technology (Natural Science), 2017, 45(9): 88-95(in Chinese).
    [14] PAKRAVAN H, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers[J]. Construction and Building Materials, 2016, 112.
    [15] 赵星. 玄武岩纤维增强泡沫混凝土保温材料的制备及性能研究[D]. 西南科技大学, 2014.

    ZHAO Xing. Preparation and performance study of basalt fiber reinforced foam concrete insulation material [D]. Southwest University of Science and Technology, 2014 (in Chinese).
    [16] 程新. 玄武岩纤维泡沫混凝土抗裂性能研究[D]. 合肥工业大学, 2018.

    CHEN Xin. Research on the anti-cracking property of basalt fiber foam concrete [D]. Hefei University of Technology, 2018 (in Chinese).
    [17] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. doi: 10.11896/cldb.19010130

    WANG Jingwen, WANG Wei. Response Surface Based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports, 2019, 33(24): 4092-4097 (in Chinese). doi: 10.11896/cldb.19010130
    [18] GENCEL O, NODEHI M, BAYRAKTAR O Y, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326.
    [19] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.

    WANG Xiaojuan, CUI Hhaoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585 (in Chinese).
    [20] 王丹薇. 常用纤维对水工泡沫混凝土物理力学性能的影响研究[J]. 吉林水利, 2022, (3): 10-13+18. doi: 10.3969/j.issn.1009-2846.2022.03.004

    WANG Danwei. Study on the influence of common fibers on the physical and mechanical properties of hydraulic foam concrete[J]. Jilin Water Resources, 2022, (3): 10-13+18(in Chinese). doi: 10.3969/j.issn.1009-2846.2022.03.004
    [21] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T266−2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development, People's Republic of China. Foam concrete [S]. Beijing: China Standard Press, 2011(in Chinese).
    [22] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1): 93-98. doi: 10.3969/j.issn.1007-9629.2017.01.017

    PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1): 93-98(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.01.017
    [23] 王凯, 付强, 徐超, 等. 考虑射束硬化的煤岩CT数据阈值分割方法及应用[J]. 煤田地质与勘探, 2023, 51(4): 11-22. doi: 10.12363/issn.1001-1986.22.08.0641

    WANG Kai, FU Qiang, XU Chao, et al. Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application[J]. Coal Geology & Exploration, 2023, 51(4): 11-22(in Chinese). doi: 10.12363/issn.1001-1986.22.08.0641
    [24] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, (3): 262-270.

    WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, (3): 262-270(in Chinese).
    [25] 李相国, 刘敏, 马保国, 等. 孔结构对泡沫混凝土性能的影响与控制技术[J]. 材料导报, 2012, 26(7): 141-144+153. doi: 10.3969/j.issn.1005-023X.2012.07.030

    LI Xiangguo, LIU Min, MA Baoguo, et al. Influence of pore structure on foam concrete and controlling method[J]. Materials Reports, 2012, 26(7): 141-144+153(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.07.030
    [26] 张亚梅, 孙超, 王申, 等. 不同密度等级泡沫混凝土的性能和孔结构[J]. 重庆大学学报, 2020, 43(8): 54-63.

    ZHANG Yamei, SUN Chao, WANG Shen, et al. Properties and pore structure of foam concrete with different density[J]. Journal of Chongqing University, 2020, 43(8): 54-63(in Chinese).
    [27] 周程涛, 陈波, 高志涵, 等. 考虑异形孔的泡沫混凝土单轴压缩离散元模拟[J/OL]. 复合材料学报: 1-11.

    ZHOU Chengtao, CHEN Bo, GAO Zhihan, et al. Discrete element simulation of foam concrete under uniaxial compression considering non-spherical pores[J/OL]. Acta Materiae Compositae Sinica, 1-11(in Chinese).
    [28] 于洋. 对数正态分布的几个性质及其参数估计[J]. 廊坊师范学院学报(自然科学版), 2011, 11(5): 8-11.

    YU Yang. Several properties of the lognormal distribution and estimation of its parameters[J]. Journal of Langfang Normal University(Natural Science Edition), 2011, 11(5): 8-11(in Chinese).
    [29] HAO Y, HAO H, LI Z. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60: 82-106. doi: 10.1016/j.ijimpeng.2013.04.008
    [30] KOLOOR S, KARIMZADEH A, YIDRIS N, et al. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model[J]. Polymers, 2020, 12(1).
    [31] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [32] KHAN S, KOLOOR S, JYE W, et al. A fatigue model to predict interlaminar damage of FRP Composite Laminates Subjected to Mode I Load[J]. Polymers, 2023, 15(3).
    [33] WANG F, JIN X, WANG X, et al. Numerical investigation on the influences of processing conditions on damage in the CFRTP cutting using a novel elastic-plastic damage model[J]. Applied Composite Materials, 2022, 29(5): 2063-2094. doi: 10.1007/s10443-022-10041-4
    [34] MATZENMILLER A, LUBLINER J, TAYLOR R. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2): 125-152. doi: 10.1016/0167-6636(94)00053-0
    [35] 吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1): 94-104. doi: 10.6052/0459-1879-13-106

    WU Yitao, YAO Weixing, WU Fuqiang. CDM model for intralaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 94-104 (in Chinese). doi: 10.6052/0459-1879-13-106
    [36] 高真, 曹鹏, 孙新建, 等. 玄武岩纤维混凝土抗压强度分析与微观表征[J]. 水力发电学报, 2018, 37(8): 111-120. doi: 10.11660/slfdxb.20180812

    GAO Zhen, CAO Peng, SUN Xinjian, et al. Compressive strength analysis and microscopic characterization of basalt fiber reinforced concrete[J]. Journal of Hydroelectric Engineering, 2018, 37(8): 111-120 (in Chinese) doi: 10.11660/slfdxb.20180812
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-06-13
  • 录用日期:  2024-06-23
  • 网络出版日期:  2024-07-06

目录

    /

    返回文章
    返回