留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天先进复合材料研究进展

冯志海 李俊宁 田跃龙 师建军 张娟 徐林 潘玲英

冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195. doi: 10.13801/j.cnki.fhclxb.20220926.003
引用本文: 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195. doi: 10.13801/j.cnki.fhclxb.20220926.003
FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4187-4195. doi: 10.13801/j.cnki.fhclxb.20220926.003
Citation: FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4187-4195. doi: 10.13801/j.cnki.fhclxb.20220926.003

航天先进复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20220926.003
详细信息
    通讯作者:

    冯志海,博士,研究员,研究方向为防热功能复合材料、碳纤维及其复合材料、新材料设计开发与应用 E-mail:fengzhh2006@sina.com

    李俊宁,博士,研究员,研究方向为飞行器热防护材料 E-mail:ljn1212@163.com

  • 中图分类号: TB33;V25

Research progress of advanced composite materials for aerospace applications

  • 摘要: 先进复合材料是各类航天飞行器热防护和结构系统的关键材料,决定了飞行器的先进性与可靠性。本文介绍最近几年国内外在陶瓷基热结构、超高温低烧蚀防热、树脂基轻质烧蚀防热、高性能热透波、高温高效隔热及结构复合材料等领域的代表性研究工作,并结合航天飞行器发展需求,对未来航天先进复合材料发展方向进行了探讨。

     

  • 图  1  SiBCN和SiC氧化膜厚度随时间变化

    Figure  1.  Relationship of scale thickness and oxidation time of SiBCN and SiC

    图  2  C/SiCN复合材料的力学性能

    Figure  2.  Mechanical properties of C/SiCN

    图  3  低烧蚀复合材料经氧-乙炔焰考核后的表面形貌(2700℃/60 s)[9-10]

    Figure  3.  Surface image of low ablative material after oxyacetylene torch test (2700℃/60 s)[9-10]

    图  4  超高温改性C/C复合材料烧蚀后形貌[12]

    Figure  4.  Morphologies of modified C/C after high temperature test[12]

    图  5  树脂基轻质烧蚀防热材料(HEEET)梯度结构和典型构件[14]

    Figure  5.  Gradient structure and typical samples of heatshield for extreme entry environment technology (HEEET)[14]

    图  6  3D打印轻质烧蚀材料[15]

    Figure  6.  Light weight ablator prepared by 3D printing[15]

    图  7  防热/隐身多功能复合材料

    Figure  7.  Multifunctional composite for thermal protection and stealth

    图  8  连续氮化硅纤维增强复合材料:(a) 力学性能;(b) 介电性能

    Figure  8.  Continuous silicon nitride fiber reinforced ceramic material: (a) Mechanical properties; (b) Dielectric properties

    图  9  帕克太阳探测器隔热罩[24]

    Figure  9.  Thermal shield of Paker solar probe[24]

    图  10  碳气凝胶材料性能[26]:(a) 加热面(Tf)和背面(Tb)的温度-加热时间曲线;(b) 不同厚度材料试验前后照片:1#=7.5 mm,2#=10 mm, 3#=12 mm;(c) 试验后材料质量损失和收缩;(d) 试验前后材料的SEM图像

    Figure  10.  Properties of carbon aerogel[26]: (a) Temperature-heating time curves of front-temperature (Tf) and back-side temperature (Tb); (b) Photos of carbon aerogel composites before and after heating: 1#=7.5 mm, 2#=10 mm, 3#=12 mm; (c) Shrinkage and mass loss of carbon aerogel composites after heating; (d) SEM images of carbon aerogel composites before and after heating

    图  11  日本东丽公司高模量树脂性能[28]

    Figure  11.  Properties of high modular resin of Toray company[28]

  • [1] JOHNSON S M. Thermal protection materials and systems: Past and future[C]. Loughborough University Seminar. Daytona Beach, 2013: 1-73.
    [2] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica,2020,176:341-356. doi: 10.1016/j.actaastro.2020.06.047
    [3] GLASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, 2008: 2862.
    [4] NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science,2016,84:192-275. doi: 10.1016/j.pmatsci.2016.08.003
    [5] BUFFENOIR F, ZEPPA C, PICHON T, et al. Development and flight qualification of the C-SiC thermal protection systems for the IXV[J]. Acta Astronautica,2016,124:85-89. doi: 10.1016/j.actaastro.2016.02.010
    [6] BALAT-PICHELIN M, CHARPENTIER L, PANERAI F, et al. Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase[J]. Journal of the European Ceramic Society,2015,35(2):487-502. doi: 10.1016/j.jeurceramsoc.2014.09.026
    [7] BANSAL N P, LAMON J. Ceramic matrix composites: Materials, modeling and technology[M]. Hoboken: John Wiley & Sons, Inc., 2015.
    [8] BINNER J, PORTER M, BAKER B, et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—A review[J]. International Materials Reviews,2020,65(7):389-444. doi: 10.1080/09506608.2019.1652006
    [9] PAUL A, RUBIO A, BINNER J, et al. Evaluation of the high temperature performance of HfB2 UHTC particulate filled Cf/C composites[J]. International Journal of Applied Ceramic Technology,2017,14:344-353. doi: 10.1111/ijac.12659
    [10] PAUL A, JAYASEELAN D D, VENUGOPAL S, et al. UHTC composites for hypersonic applications[J]. American Ceramic Society Bulletin, 2012, 91: 22-29.
    [11] LAZZERI A. CVI processing of ceramic matrix composites. In ceramics and composites processing methods[M]. Hoboken: John Wiley & Sons, Inc. , 2012: 313–349.
    [12] 王俊山, 徐林, 李炜, 等. 航天领域C/C复合材料研究进展[J]. 宇航材料工艺, 2022, 52(2):1-12.

    WANG Junshan, XU Lin, LI Wei, et al. Research progress on C/C composites for aerospace applications[J]. Aerospace Materials & Technology,2022,52(2):1-12(in Chinese).
    [13] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8):14-24.

    FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering,2020,48(8):14-24(in Chinese).
    [14] MILOS F S, CHEN Y K, MAHZARI M, Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic[J]. Journal of Spacecraft and Rockets, 2018, 55: 712-722.
    [15] CHANG Y C, YEE C, FAHY W, et al. Ablation performance of gradient insulated structure for thermal protection systems[C]. Proceeding of AIAA SciTech Forum. San Diego, 2022: 1-11.
    [16] 梁馨, 方洲, 邓火英, 等. 空间探测烧蚀防热材料应用及趋势[J]. 宇航材料工艺, 2021, 51(5):34-40.

    LIANG Xin, FANG Zhou, DENG Huoying, et al. Application and trend of ablation thermal protection materials for space exploration[J]. Aerospace Materials & Technology,2021,51(5):34-40(in Chinese).
    [17] 李仲平. 热透波机理与热透波材料[M]. 北京: 中国宇航出版社, 2013.

    LI Zhongping. High-temperature wave-transparent mechanism and materials[M]. Beijing: China Aerospace Publishing House, 2013(in Chinese).
    [18] MOROZUMI H, SATO K, TEZUKA A, et al. Preparation of high strength ceramic fiber reinforced silicon nitride composites by a preceramic polymer impregnation method[J]. Ceramics International,1997,23:179-184. doi: 10.1016/S0272-8842(96)00021-1
    [19] ZOU C R, LI B, WANG A Q, et al. Fabrication and high-temperature mechanical properties of 2.5D Si3N4f/BN fiber-reinforced ceramic matrix composite[J]. Materials and Design,2016,92:335-344. doi: 10.1016/j.matdes.2015.12.048
    [20] YANG X J, LI B, LI D, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites[J]. Journal of Materials Science & Technology,2019,35:2761-2766.
    [21] ZOU C R, ZHANG C R, LI B, et al. Ablation behavior of boron nitride based ceramic composites reinforced by continuous silicon oxynitride fiber[J]. Ceramics International,2015,41:4768-4774. doi: 10.1016/j.ceramint.2014.12.027
    [22] HU L, HE R, LEI H, et al. Carbon aerogel for insulation applications: A review[J]. International Journal of Thermophysics,2019,40:39. doi: 10.1007/s10765-019-2505-5
    [23] WINER M, REICHENAUER G, BRAXMEIER S, et al. Carbon aerogel-based high-temperature thermal insulation[J]. International Journal of Thermophysics,2009,30:1372-1385. doi: 10.1007/s10765-009-0595-1
    [24] SUROWIEC J. Cutting-edge heat shield installed on NASA’s Parker Solar Probe[EB/OL]. (2018-07-05). [2022-08-28]. https://www.nasa.gov/feature/goddard/2018/cutting-edge-heat-shield-installed-on-nasa-s-parker-solar-probe.
    [25] SUZUKI T, AOKI T, OGASAWARA T, et al. Study of non-ablative lightweight thermal protection system for Mars exploration mission[C]. 43rd AIAA Thermophysics Conference. New Orleans, 2012.
    [26] LI J, GUO P, HU C, et al. Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800℃[J]. ACS Nano,2022,16:6565-6577. doi: 10.1021/acsnano.2c00943
    [27] ROSS M. Evaluation of advanced composites structures technologies for application to NASA’s vision for space exploration[R]. NASA/CR-2008-215120, Boeing Phantom Works. Long Beach, 2008.
    [28] TORAY. TORAYCA® Prepreg matrix resins [EB/OL]. (2015-12-25). [2022-08-28]. https://www.nanoalloy.toray/en/product/materials/pdf/nanoalloyprepreg.pdf.
    [29] 杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7):3035-3049. doi: 10.13801/j.cnki.fhclxb.20220325.004

    YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix compo-sites for aerospace shuttle vehicles abroad[J]. Acta Mate-riae Compositae Sinica,2022,39(7):3035-3049(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220325.004
    [30] HOUT S L, LINCOLN J E, CURLISS D B, et al. Aging durabi-lity and high temperature mechanical performance of P2 SI 900 HT composite materials[C]. SAMPE Fall Technical Conference. Fort Worth, 2007, 39: 1-17.
    [31] 赵云峰, 潘玲英. 航天先进结构复合材料及制造技术研究进展[J]. 宇航材料工艺, 2021, 51(4):29-36.

    ZHAO Yunfeng, PAN Lingying. Research progress of aerospace advanced polymer matrix composites and manufacturing technology[J]. Aerospace Materials & Technology,2021,51(4):29-36(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  1899
  • HTML全文浏览量:  421
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-12
  • 录用日期:  2022-09-21
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回