留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚性纳米孔酚醛树脂基复合材料的制备与性能

刘杰 曹宇 钱震 刘瑞祥 周长灵 潘鹤林 张亚运 牛波 龙东辉

刘杰, 曹宇, 钱震, 等. 刚性纳米孔酚醛树脂基复合材料的制备与性能[J]. 复合材料学报, 2023, 40(10): 5601-5610. doi: 10.13801/j.cnki.fhclxb.20221221.001
引用本文: 刘杰, 曹宇, 钱震, 等. 刚性纳米孔酚醛树脂基复合材料的制备与性能[J]. 复合材料学报, 2023, 40(10): 5601-5610. doi: 10.13801/j.cnki.fhclxb.20221221.001
LIU Jie, CAO Yu, QIAN Zhen, et al. Preparation and properties of rigid nanoporous phenolic resin-based composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5601-5610. doi: 10.13801/j.cnki.fhclxb.20221221.001
Citation: LIU Jie, CAO Yu, QIAN Zhen, et al. Preparation and properties of rigid nanoporous phenolic resin-based composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5601-5610. doi: 10.13801/j.cnki.fhclxb.20221221.001

刚性纳米孔酚醛树脂基复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20221221.001
基金项目: 国家自然科学基金(22078100;52102098);中国博士后科学基金(2022 M711140)
详细信息
    通讯作者:

    牛波,博士,中级,研究方向为热防护材料与技术 E-mail: niubo@ecust.edu.cn

    龙东辉,博士,教授,博士生导师,研究方向为热防护材料与技术 E-mail: longdh@ecust.edu.cn

  • 中图分类号: TB332

Preparation and properties of rigid nanoporous phenolic resin-based composites

Funds: National Natural Science Foundation of China (22078100; 52102098); Postdoctoral Science Foundation of China (2022 M711140)
  • 摘要: 随着我国航天工程快速发展,对热防护系统的轻量化、维形性、防热效率及长时间服役能力等提出了更加苛刻的要求。本文以刚性莫来石陶瓷瓦(RMI)为增强体、杂化酚醛树脂(PR)为基体,通过溶胶-凝胶-常压梯度干燥工艺制备出一种刚性纳米孔酚醛树脂基RMI/PR复合材料,系统研究了树脂浓度对复合材料的微观结构、力学性能、隔热性能及烧蚀性能的影响。结果表明:RMI具有明显的横观各向同性,其Z向室温热导率为0.036 W/(m∙K)。随着树脂浓度从15wt%增加到45wt%,RMI/PR的密度由0.52 g/cm3逐渐增加至0.85 g/cm3,其树脂的纳米孔径从2081 nm急剧减小至32 nm。随着树脂浓度的增加,RMI/PR室温热导率缓慢增加且均小于0.07 W/(m∙K),但其力学性能显著得到增强且Z向压缩强度最高达20.8 MPa。当RMI/PR经过1000℃、300 s的静态加热后,其背温从277℃降低至244℃;当RMI/PR经过2000℃、30 s的氧-乙炔烧蚀后,其线烧蚀率从0.200 mm/s降低至0.081 mm/s,表明树脂浓度的增加能够显著提升复合材料的高温隔热和抗烧蚀性能。

     

  • 图  1  RMI沿X/Y向 (a) 和Z向 (b) 纤维分布SEM图像;(c) RMI烧结颈结构的SEM图像;(d) RMI压汞孔隙分析图

    Figure  1.  SEM images of fiber distribution in X/Y (a) and Z (b) of RMI; (c) SEM image of neck formation of RMI; (d) Mercury intrusion porosimetry diagram of RMI

    图  2  (a) RMI/PR复合材料沿Z向的Micro-CT三维微观结构图;RMI/PR-30复合材料纤维与树脂结合处SEM图像 (b) 和基体SEM图像 (c);(d) RMI/PR复合材料的孔径分布图;RMI/PR在N2 (e) 和空气氛围 (f) 下的TG曲线

    Figure  2.  (a) 3D microstructure of RMI/PR composites in Z from micro-CT scanning; SEM images of fiber/resin binding (b) and matrix (c) of RMI/PR-30 composites; (d) Pore size distribution of RMI/PR composites; TG curves of RMI/PR composites in N2 (e) and air atmosphere (f)

    图  3  RMI及RMI/PR:Z向 (a) 和X/Y向 (b) 的压缩应力-应变曲线图;Z向 (c) 和X/Y向 (d) 的压缩强度-模量变化图

    Figure  3.  RMI and RMI/PR: Compressive stress-strain curves in Z (a) and X/Y (b); Compressive strength-modulus variation diagram in Z (c) and X/Y (d)

    图  4  RMI处于屈服阶段的纤维 (a) 及粘结点 (b) 的SEM图像;RMI/PR-15分别处于弹性和屈服阶段的纤维与树脂结合处的SEM图像 ((c), (d)) 及基体的SEM图像 ((e), (f))

    Figure  4.  SEM images of fiber (a) and bonding point (b) of RMI at yield stage; SEM images of fiber/resin binding ((c), (d)) and matrix ((e), (f)) of RMI/PR-15 at elastic and yield stage, respectively

    图  5  (a) RMI及RMI/PR沿Z向的室温热导率;(b) RMI及RMI/PR的背部温度响应曲线

    Figure  5.  (a) Room-temperature thermal conductivity in Z of RMI and RMI/PR; (b) Backside temperature response curves of RMI and RMI/PR

    图  6  RMI (a) 和RMI/PR ((b)~(f)) 烧蚀后宏观形貌;RMI/PR-45烧蚀后表面微观形貌 (g) 和基体 (h) 的SEM图像;(i) RMI/PR的背部温度响应曲线

    Figure  6.  Macrograph photos of RMI (a) and RMI/PR ((b)-(f)) after ablation; SEM images of surface microstructure (g) and matrix (h) of RMI/PR-45 after ablation; (i) Backside temperature response curves of RMI/PR

    图  7  RMI/PR-45烧蚀后表面物质的XRD图谱 (a);RMI/PR-45烧蚀后表面纤维 (b) 与基体 (c) 的EDS分析

    Figure  7.  XRD patterns of RMI/PR-45 surface substance after ablation (a); EDS analysis of surface fiber (b) and matrix (c) of RMI/PR-45 after ablation

    表  1  刚性纳米孔酚醛树脂基复合材料(RMI/PR)的样品编号

    Table  1.   Sample number of rigid nanoporous phenolic resin matrix composites (RMI/PR)

    Sample number Mass fraction of PR/wt%
    RMI/PR-15 15
    RMI/PR-25 25
    RMI/PR-30 30
    RMI/PR-40 40
    RMI/PR-45 45
    下载: 导出CSV

    表  2  RMI/PR复合材料的基础物理性质

    Table  2.   Basic physical properties of RMI/PR composites

    SampleBulk density/
    (g·cm−3)
    Mass ratio of
    resin/%
    Most probable
    pore/nm
    Thermal conductivity/
    (W∙(m∙K)−1)
    Specific heat
    capacity/(J∙(g·K)−1)
    RMI 0.31 0 45000 0.036 0.70
    RMI/PR-15 0.52 40 2081 0.057 1.29
    RMI/PR-25 0.61 49 434 0.061 1.31
    RMI/PR-30 0.67 54 121 0.065 1.32
    RMI/PR-40 0.77 60 63 0.067 1.34
    RMI/PR-45 0.85 64 32 0.069 1.35
    下载: 导出CSV

    表  3  RMI及RMI/PR的抗烧蚀性能

    Table  3.   Ablative resistance properties of RMI and RMI/PR

    SampleMass ablation
    rate/(g∙s−1)
    Linear ablation
    rate/(mm∙s−1)
    RMI
    RMI/PR-15
    RMI/PR-250.0270.200
    RMI/PR-300.0250.151
    RMI/PR-400.0370.144
    RMI/PR-450.0290.081
    下载: 导出CSV
  • [1] 杨昌昊, 董彦芝. 我国深空探测领域防热材料的进展与需求[J]. 宇航材料工艺, 2021, 51(5):26-33.

    YANG Changhao, DONG Yanzhi. Progress and requirements of thermal protection materials for deep space exploration in China[J]. Aerospace Materials & Technology,2021,51(5):26-33(in Chinese).
    [2] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8):14-24. doi: 10.11868/j.issn.1001-4381.2020.000206

    FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering,2020,48(8):14-24(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000206
    [3] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica,2020,176:341-356. doi: 10.1016/j.actaastro.2020.06.047
    [4] 中国人民解放军总装备部军事训练教材工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 116-125.

    Working Committee on Military Training Textbooks of the General Armament Department of the People's Liberation Army of China. Hypersonic areoheat and aerothermal protection[M]. Beijing: National Defense Industry Press, 2003: 116-125(in Chinese).
    [5] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. doi: 10.16253/j.cnki.37-1226/tq.2017.07.001

    CHEN Yufeng, HONG Changqing, HU Chenglong, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics,2017,38(5):311-390(in Chinese). doi: 10.16253/j.cnki.37-1226/tq.2017.07.001
    [6] TRAN H K, RASKY D J, ESFAHANI L. Thermal response and ablation characteristics of light-weight ceramic ablators[C]//AIAA 28th Thermophysics Conference. Orlando, USA, 1993: 1.
    [7] TRAN H, JOHNSON C, RASKY D, et al. Silicone impregnated reusable ceramic ablators for Mars follow-on missions[C]//31st Thermophysics Conference. New Orleans, 2006: 96-1819.
    [8] GRAY M H B, KURBANYAN L, MILSTEIN F. Constitutive properties of silicone-impregnated reusable ceramic ablator in compression: Poisson's ratios[J]. Journal of Spacecraft and Rockets,2009,46(4):923-928. doi: 10.2514/1.34350
    [9] PALMER G, POLSKY S. Heating analysis of the nosecap and leading edges of the X-34 vehicle[J]. Journal of Spacecraft and Rockets,1999,36(2):199-205. doi: 10.2514/2.3450
    [10] 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80, 90. doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA Xianfeng, LIU Xuhua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology,2016,46(1):77-80, 90(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.013
    [11] STACKPOOLE M, SEPKA S, COZMUTA I, et al. Post-flight evaluation of stardust sample return capsule forebody heatshield material[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008: 1202.
    [12] DRIVER D M, SLIMKO E M, BECK R A S. The evolution of the MSL heatshield[J/OL]. Georgia Institute of Technology, 2023[2023-08-28]. http://hdl.handle.net/1853/26356.
    [13] 中国国家标准化管理委员会. 绝热材料 稳态热阻及有关特性的测定 热流计法: GB/T 10295—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Thermal insulation—Determination of steady-state thermal resistance and related properties—Heat flow meter apparatus: GB/T 10295—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [14] 中国国家标准化管理委员会. 多孔陶瓷压缩强度试验方法: GB/T 1964—1996[S]. 北京: 中国标准出版社, 1996.

    Standardization Administration of the People's Republic of China. Test method for crushing strength of porous ceramic: GB/T 1964—1996[S]. Beijing: Standards Press of China, 1996(in Chinese).
    [15] 国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323A—96[S]. 北京: 国防工业出版社, 1996.

    Commission of Science, Technology and Industry for National Defense of the PRC. Test methods for ablation for ablators: GJB 323A—96[S]. Beijing: National Defense Industry Press, 1996(in Chinese).
    [16] 王晓晶, 郑洲顺, 宋敏, 等. 金属粉末及纤维烧结颈形貌的三维重构[J]. 中国体视学与图像分析, 2017, 22(2):127-132. doi: 10.13505/j.1007-1482.2017.22.02.002

    WANG Xiaojing, ZHENG Zhoushun, SONG Min, et al. Three dimensional reconstruction of metal powder and fiber sintered morphology[J]. Chinese Journal of Stereology and Image Analysis,2017,22(2):127-132(in Chinese). doi: 10.13505/j.1007-1482.2017.22.02.002
    [17] 张钊. SiO2基纤维隔热瓦热导率及压缩性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZHANG Zhao. Study on thermal conductivity and compression performance of SiO2-based fibrous insulation[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [18] 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8):3663-3673.

    ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanism of low-density needled fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3663-3673(in Chinese).
    [19] 孙陈诚, 胡子君, 鲁胜, 等. 刚性隔热材料的力学性能[J]. 宇航材料工艺, 2010, 40(2):74-76. doi: 10.3969/j.issn.1007-2330.2010.02.020

    SUN Chencheng, HU Zijun, LU Sheng, et al. Mechanical properties of rigid thermal insulating materials[J]. Aerospace Materials & Technology,2010,40(2):74-76(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.02.020
    [20] 杨海龙, 胡子君, 胡胜泊, 等. 纳米隔热材料的热导率变化规律[J]. 宇航材料工艺, 2019, 49(2):30-35. doi: 10.12044/j.issn.1007-2330.2019.02.006

    YANG Hailong, HU Zijun, HU Shengbo, et al. Thermal conductivity variation of nano-porous thermal insulating materials[J]. Aerospace Materials & Technology,2019,49(2):30-35(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.02.006
    [21] LU X, ARDUINI-SCHUSTER M C, KUHN J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science,1992,255(5047):971-972. doi: 10.1126/science.255.5047.971
    [22] 王亚楠, 李兆, 曹静, 等. 酚醛树脂及含硼酚醛树脂热裂解和碳化研究进展[J]. 当代化工, 2021, 50(9):2235-2241. doi: 10.3969/j.issn.1671-0460.2021.09.048

    WANG Yanan, LI Zhao, CAO Jing, et al. Research progress of pyrolysis and carbonization of phenolic resin and boron-containing phenolic resin[J]. Contemporary Chemical Industry,2021,50(9):2235-2241(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.09.048
    [23] 钱震, 张鸿宇, 张琪凯, 等. 高强度—中密度纳米孔树脂基防隔热复合材料的制备与性能[J].复合材料学报, 2023, 40(1): 83-95.

    QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites [J]. Acta Materiae Compositae Sinica, 2023, 40(1): 83-95(in Chinese).
    [24] 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热—力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    SHI Shengbo. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [25] 王重海. CBCF/RF气凝胶复合材料的性能优化与烧蚀行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Chonghai. Optimization of properties and ablation behavior of CBCF/RF aerogel composites[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [26] KOU S, FAN S, MA X, et al. Ablation performance of C/HfC-SiC composites with in-situ HfSi2/HfC/SiC multi-phase coatings under 3000℃ oxyacetylene torch[J]. Corrosion Science,2022,200:110218. doi: 10.1016/j.corsci.2022.110218
    [27] LI T, ZHANG Y, FU Y, et al. Siliconization elimination for SiC coated C/C composites by a pyrolytic carbon coating and the consequent improvement of the mechanical property and oxidation resistances[J]. Journal of the European Ceramic Society,2021,41(10):5046-5055. doi: 10.1016/j.jeurceramsoc.2021.04.008
    [28] PASK J A, SCHNEIDER H. Phase equilibria and stability of mullite[M]. New Jersey: John Wiley & Sons, Ltd., 2006: 227-237.
    [29] LI X K, LIU L, ZHANG Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon,2001,39(2):159-165. doi: 10.1016/S0008-6223(00)00020-8
    [30] LAN X, LIANG C, WU M, et al. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves[J]. The Journal of Physical Che-mistry C,2018,122:18537-18544. doi: 10.1021/acs.jpcc.8b05339
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  471
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-11-23
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-23
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回