留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚性纳米孔酚醛树脂基复合材料的制备与性能

刘杰 曹宇 钱震 刘瑞祥 周长灵 潘鹤林 张亚运 牛波 龙东辉

刘杰, 曹宇, 钱震, 等. 刚性纳米孔酚醛树脂基复合材料的制备与性能[J]. 复合材料学报, 2022, 41(0): 1-10
引用本文: 刘杰, 曹宇, 钱震, 等. 刚性纳米孔酚醛树脂基复合材料的制备与性能[J]. 复合材料学报, 2022, 41(0): 1-10
Jie LIU, Yu CAO, Zhen QIAN, Ruixiang LIU, Changling ZHOU, Helin PAN, Yayun ZHANG, Bo NIU, Donghui LONG. Preparation and properties of rigid nanoporous phenolic resin-based composites[J]. Acta Materiae Compositae Sinica.
Citation: Jie LIU, Yu CAO, Zhen QIAN, Ruixiang LIU, Changling ZHOU, Helin PAN, Yayun ZHANG, Bo NIU, Donghui LONG. Preparation and properties of rigid nanoporous phenolic resin-based composites[J]. Acta Materiae Compositae Sinica.

刚性纳米孔酚醛树脂基复合材料的制备与性能

基金项目: 国家自然科学基金 (22078100, 52102098); 中国博士后科学基金 (2022 M711140)
详细信息
    通讯作者:

    牛波,博士,研究方向为热防护材料与技术; E-mail:niubo@ecust.edu.cn

    龙东辉,教授,博士生导师,研究方向为热防护材料与技术; E-mail:longdh@ecust.edu.cn

  • 中图分类号: TB332

Preparation and properties of rigid nanoporous phenolic resin-based composites

Funds: The National Natural Science Foundation of China (22078100; 52102098); Postdoctoral Science Foundation of China (2022 M711140)
  • 摘要: 随着我国航天工程快速发展,对热防护系统的轻量化、维形性、防热效率及长时间服役能力等提出了更加苛刻的要求。本文以刚性莫来石陶瓷瓦为增强体、杂化酚醛树脂为基体,通过溶胶-凝胶-常压梯度干燥工艺制备出一种刚性纳米孔酚醛树脂基复合材料(RMI/PR)。该材料具有横观各向同性,且在厚度方向有最低热导率(< 0.07 W/(m∙K));同时,陶瓷瓦增强体中纤维与纤维之间的刚性连接,使得复合材料在Z向具有更优的抗压性能和高温尺寸稳定性。进一步研究表明,随着酚醛树脂浓度的增加,复合材料的力学、隔热以及抗烧蚀性能均明显得到提升。此类复合材料兼具了轻质-高强、烧蚀维形以及防隔热一体化的功能,在中低热流、长时有氧的复杂气动热环境中具有较好的应用前景。复合材料沿Z向的Micro-CT三维微观结构图(a)和RMI与RMI/PR沿Z向的室温热导率(b)

     

  • 图  1  莫来石陶瓷瓦(RMI)沿X/Y向(a)和Z向(b)纤维分布SEM图;烧结颈结构SEM图(c);RMI压汞孔隙分析图(d)

    Figure  1.  SEM image of fiber distribution in X/Y (a) and Z (b) of mullite ceramic tile (RMI); SEM images of neck formation (c); Mercury intrusion porosimetry diagram of RMI (d)

    图  2  复合材料(RMI/PR)沿Z向的Micro-CT三维微观结构图(a);RMI/PR-30纤维与树脂结合处SEM图(b)和基体SEM图(c);RMI/PR的孔径分布图(d);RMI/PR在N2(e)和空气氛围(f)下的TG曲线

    Figure  2.  The 3 D microstructure of composites (RMI/PR) in Z from micro-CT scanning (a); SEM images of fiber/resin binding (b) and matrix (c) of RMI/PR-30; (d) Pore size distribution of RMI/PR; TG curves of RMI/PR in N2 (e) and air atmosphere (f)

    图  3  RMI及RMI/PR沿Z向(a)和X/Y向(b)的压缩应力-应变曲线图;RMI及RMI/PR沿Z向(c)和X/Y向(d)的压缩强度-模量变化图

    Figure  3.  Compressive strength-modulus variation in Z (a) and X/Y (b) diagram of RMI and RMI/PR; Compressive stress-strain in Z (c) and X/Y (d) curse of RMI and RMI/PR

    图  4  RMI处于屈服阶段的纤维(a)及粘结点SEM图(b);RMI/PR-15分别处于弹性和屈服阶段的纤维与树脂结合处SEM图(c-d)及基体SEM图(e-f)

    Figure  4.  (a-b) SEM images of fiber (a) and bonding point (b) of RMI at yield stage; SEM images of fiber/resin binding (c-d) and matrix (e-f) of RMI/PR-15 at elastic and yield stage, respectively

    图  5  (a)RMI及RMI/PR沿Z向的室温热导率;(b)RMI及RMI/PR的背部温度响应曲线

    Figure  5.  (a)The room-temperature thermal conductivity in Z of RMI and RMI/PR; (b) Backside temperature response curve of RMI and RMI/PR

    图  6  RMI (a)和RMI/PR (b-f)烧蚀后宏观形貌;RMI/PR-45烧蚀后表面微观形貌(g)和基体SEM图(h);RMI/PR的背部温度响应曲线(i)

    Figure  6.  Macrograph photo of RMI (a) and RMI/PR (b-f) after ablation; SEM images of surface microstructure (g) and matrix (h) of RMI/PR-45 after ablation; Backside temperature response curve of RMI/PR (i)

    图  7  RMI/PR-45烧蚀后表面物质XRD分析(a);RMI/PR-45烧蚀后表面纤维(b)与基体EDS分析(c)

    Figure  7.  XRD pattern of RMI/PR-45 surface substance after ablation (a); EDS analysis of surface fiber (b) and matrix (c) of RMI/PR-45 after ablation

    表  1  莫来石陶瓷瓦(RMI)和刚性纳米孔酚醛树脂基复合材料(RMI/PR)的基础物理性质

    Table  1.   Basic physical properties of mullite ceramic tile (RMI) and rigid nanoporous phenolic resin-based composites (RMI/PR)

    SampleBulk density/
    (g·cm−3)
    Mass ratio of
    resin / %
    Most probable
    pore
    / nm
    Thermal conductivity
    /
    (W∙(m∙K)−1)
    Specific heat
    capacity
    / (J∙(g·K)−1)
    RMI0.310450000.0360.70
    RMI/PR-150.524020810.0571.29
    RMI/PR-250.61494340.0611.31
    RMI/PR-300.67541210.0651.32
    RMI/PR-400.7760630.0671.34
    RMI/PR-450.8564320.0691.35
    下载: 导出CSV

    表  2  RMI及RMI/PR的抗烧蚀性能

    Table  2.   The ablative resistance properties of RMI and RMI/PR

    SampleMass ablation
    rate/(g∙s−1)
    Linear ablation
    rate/(mm∙s−1)
    RMI--
    RMI/PR-15--
    RMI/PR-250.0270.200
    RMI/PR-300.0250.151
    RMI/PR-400.0370.144
    RMI/PR-450.0290.081
    下载: 导出CSV
  • [1] 杨昌昊, 董彦芝. 我国深空探测领域防热材料的进展与需求[J]. 宇航材料工艺, 2021, 51(5):26-33.

    YANG Changhao, DONG Yanzhi. Progress and requirements of thermal protection materials for deep space exploration in China[J]. Aerospace Materials & Technology,2021,51(5):26-33(in Chinese).
    [2] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8):14-24. doi: 10.11868/j.issn.1001-4381.2020.000206

    FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering,2020,48(8):14-24(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000206
    [3] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica,2020,176:341-356. doi: 10.1016/j.actaastro.2020.06.047
    [4] 中国人民解放军总装备部军事训练教材工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003.

    Working Committee on Military Training Textbooks of the General Armament Department of the People’s Liberation Army of China. Hypersonic Areoheat and Aerothermal Protection[M]. Beijing: National Defense Industry Press, 2003 (in Chinese).
    [5] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. doi: 10.16253/j.cnki.37-1226/tq.2017.07.001

    CHEN Yufeng, HONG Changqing, HU Chenglong, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics,2017,38(5):311-390(in Chinese). doi: 10.16253/j.cnki.37-1226/tq.2017.07.001
    [6] TRAN H K, RASKY D J, ESFAHANI L. Thermal Response and Ablation Characteristics of Light-weight Ceramic Ablators[C]//AIAA 28 th Thermophysics Conference July 6-9, 1993/Orlando, FL: 1.
    [7] TRAN H, JOHNSON C, RASKY D, et al. Silicone impregnated reusable ceramic ablators for Mars follow-on missions[C]// Thermophysics Conference. 2006.
    [8] GRAY M H B, KURBANYAN L, MILSTEIN F. Constitutive Properties of Silicone-impregnated Reusable Ceramic Ablator in Compression: Poisson's Ratios[J]. Journal of Spacecraft and Rockets,2009,46:923-928. doi: 10.2514/1.34350
    [9] PALMER G, POLSKY S. Heating Analysis of the Nosecap and Leading Edges of the X-34 Vehicle[J]. Journal of Spacecraft and Rockets,1999,36(2):199-205. doi: 10.2514/2.3450
    [10] STACKPOOLE M, SEPKA S, COZMUTA I, et al. Post-flight evaluation of stardust sample return capsule forebody heatshield material[C]//46 th AIAA Aerospace Sciences Meeting and Exhibit. 2008: 1202.
    [11] DRIVER D M, SLIMKO E M, BECK R A S. The evolution of the MSL heatshield[C]. Georgia Institute of Technology, 2008.
    [12] 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80+90. doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA Xianfeng, LIU Xuhua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology,2016,46(1):77-80+90(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.013
    [13] 中国国家标准化管理委员会. 绝热材料稳态热阻及有关特性的测定 热流计法: GB/T 10295-2008[S]. 北京: 中国标准出版社, 2008.

    Thermal insulation-Determination of steady-state thermal resistance and related properties - Heat flow meter apparatus: GB/T 10295-2008[S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [14] 中国国家标准化管理委员会. 多孔陶瓷压缩强度试验方法: GB/T 1964-1996[S]. 北京: 中国标准出版社, 1996.

    Standardization Administration of the People’s Republic of China. Test method for crushing strength of porous ceramic: GB/T 1964-1996[S]. Beijing: Standards Press of China, 1996 (in Chinese).
    [15] 国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323 A-96[S]. 1996.

    The Commission of Science, Technology and Industry for National Defense of the PRC. Test methods for ablation for ablators: GJB 323 A-96[S]. 1996 (in Chinese).
    [16] 王晓晶, 郑洲顺, 宋敏, 等. 金属粉末及纤维烧结颈形貌的三维重构[J]. 中国体视学与图像分析, 2017, 22(2):127-132. doi: 10.13505/j.1007-1482.2017.22.02.002

    WANG Xiaojing, ZHENG Zhoushun, SONG Min, et al. Three dimensional reconstruction of metal powder and fiber sintered morphology[J]. Chinese Journal of Stereology and Image Analysis,2017,22(2):127-132(in Chinese). doi: 10.13505/j.1007-1482.2017.22.02.002
    [17] 张钊. SiO2基纤维隔热瓦热导率及压缩性能研究[D]. 哈尔滨工业大学, 2014.

    ZHANG Zhao. Study on thermal conductivity and compression performance of SiO2-based fibrous insulation[D]. Harbin Institute of Technology, 2014 (in Chinese).
    [18] 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8):3663-3673.

    ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanism of low-density needled fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3663-3673(in Chinese).
    [19] 孙陈诚, 胡子君, 鲁胜, 等. 刚性隔热材料的力学性能[J]. 宇航材料工艺, 2010, 40(2):74-76. doi: 10.3969/j.issn.1007-2330.2010.02.020

    SUN Chencheng, HU Zijun, LU Sheng, et al. Mechanical properties of rigid thermal insulating materials[J]. Aerospace Materials & Technology,2010,40(2):74-76(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.02.020
    [20] 杨海龙, 胡子君, 胡胜泊, 等. 纳米隔热材料的热导率变化规律[J]. 宇航材料工艺, 2019, 49(2):30-35. doi: 10.12044/j.issn.1007-2330.2019.02.006

    YANG Hailong, HU Zijun, HU Shengbo, et al. Thermal conductivity variation of Nano-porous thermal insulating materials[J]. Aerospace Materials & Technology,2019,49(2):30-35(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.02.006
    [21] X. LU, M. C. ARDUINI-SCHUSTER, J. KUHN, et al. Thermal conductivity of monolithic organic aerogels[J]. Science,1992,255(5047):971-972. doi: 10.1126/science.255.5047.971
    [22] 王亚楠, 李兆, 曹静, 等. 酚醛树脂及含硼酚醛树脂热裂解和碳化研究进展[J]. 当代化工, 2021, 50(9):2235-2241. doi: 10.3969/j.issn.1671-0460.2021.09.048

    WANG Yanan, LI Zhao, CAO Jing, et al. Research progress of pyrolysis and carbonization of phenolic resin and boron-containing phenolic resin[J]. Contemporary Chemical Industry,2021,50(9):2235-2241(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.09.048
    [23] 钱震, 张鸿宇, 张琪凯, 等. 高强度-中密度纳米孔树脂基防隔热复合材料的制备与性能[J/OL]. 复合材料学报: 1-10

    2022-12-15]. http: //doi. org/10.13801/j. cnki. fhclxb. 20211223.001. QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength - medium density nanoporous resin-based ablation/insulation integrated composites [J/OL]. Acta Materiae Compositae Sinica: 1-10[2022-12-15]. http://doi.org/10.13801/j.cnki.fhclxb.20211223.001 (in Chinese).
    [24] 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热—力学性能研究[D]. 哈尔滨工业大学, 2013.

    SHI Shengbo. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin Institute of Technology, 2013 (in Chinese).
    [25] 王重海. CBCF/RF气凝胶复合材料的性能优化与烧蚀行为研究[D]. 哈尔滨工业大学, 2018.

    WANG Chonghai. Optimization of properties and ablation behavior of CBCF/RF aerogel composites[D]. Harbin Institute of Technology, 2018 (in Chinese).
    [26] Kou S, Fan S, Ma X, et al. Ablation performance of C/HfC-SiC composites with in-situ HfSi2/HfC/SiC multi-phase coatings under 3000℃ oxyacetylene torch[J]. Corrosion Science,2022,200:110218. doi: 10.1016/j.corsci.2022.110218
    [27] LI T, ZHANG Y, FU Y, et al. Siliconization elimination for SiC coated C/C composites by a pyrolytic carbon coating and the consequent improvement of the mechanical property and oxidation resistances[J]. Journal of the European Ceramic Society,2021,41(10):5046-5055. doi: 10.1016/j.jeurceramsoc.2021.04.008
    [28] PASK J A, SCHNEIDER H. Phase Equilibria and Stability of Mullite[M]. John Wiley & Sons, Ltd, 2006.
    [29] LI X K, LIU L, ZHANG Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon,2001,39(2):159-165. doi: 10.1016/S0008-6223(00)00020-8
    [30] LAN X, LIANG C, WU M, et al. Facile Synthesis of Highly Defected Silicon Carbide Sheets for Efficient Absorption of Electromagnetic Waves[J]. The Journal of Physical Chemistry C,2018,122:18537-18544. doi: 10.1021/acs.jpcc.8b05339
  • 加载中
计量
  • 文章访问数:  188
  • HTML全文浏览量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-11-23
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-27

目录

    /

    返回文章
    返回