Effect of thickness of carbon fiber backplane on penetration resistance of aluminum composite plate
-
摘要: 碳纤维(Carbon Fiber CF)复合材料以其高强度,低密度而广泛应用于航空航天防护领域。为研究CF背板厚度对Al/CF复合板抗冲击效果与纤维层损伤性质的影响,开展滑膛枪发射8 mm钨合金球形破片正侵彻冲击Al/CF复合板实验,利用DIC与CT得到复合板在不同冲击条件下的动态响应及内部破坏。基于破片侵彻Al/CF复合板的有限元模型,以研究CF板厚度(0.7~12.6 mm)对Al/CF复合板吸能性能的影响。结果表明:Al板在冲击作用下发生剪切破坏,贴近Al板的内层纤维受到压剪破坏,而外层纤维产生拉伸变形,破坏裂纹沿着纤维方向延伸且分层现象显著;CF板厚度对Al板机械支撑的影响呈非线性增大,CF板增加到一定厚度后(4.2 mm、5.6 mm、5.6 mm),破片(
1000 m/s、1250 m/s、1500 m/s)穿透Al板阶段的能量吸收没有明显增强,Al板吸收冲击动能分别为1008.02 J、2061.84 J、2868.61 J;纤维层位置影响纤维损伤面积和纤维损伤形状的变化,纤维损伤面积沿纤维厚度方向先减小后增大,纤维损伤形状沿厚度方向由椭圆形变为细长形;随着CF板纤维厚度的增加,碳纤维变形程度减小,复合板的比吸能随面密度增加而线性下降。Abstract: Carbon Fiber (CF) composites are widely used in the field of aerospace protection due to their high strength and low density. To investigate the effect of carbon fiber (CF) backplate thickness on the impact resistance of Al plates, the experiments using a musket were conducted to launch an 8 mm tungsten alloy spherical projectile at Al/CF composite plates. The dynamic response and internal damage of the composite plates under different impact conditions were examined by digital image correlation (DIC) and computed tomography (CT). The effect of CF plate thickness (0.7~12.6 mm) on the energy absorption performance of Al/CF composite plate was studied based on the finite element model of fragment penetration of Al/CF composite plate. The results show that the aluminum plate is subjected to shear failure under the impact, the inner fiber is damaged with compressive shear, while the outer fiber is deformed by tensile deformation. The failure crack extends along the fiber direction and the delamination is significant. The energy absorption of Al plate does not increase significantly under the penetration of projectiles (1000 m/s,1250 m/s,1500 m/s) when the CF plate increases to a certain thickness (4.2 mm, 5.6 mm, 5.6 mm), and the impact kinetic energy of Al plate is1008.02 J,2061.84 J and2868.61 J, respectively. The fiber layer position affects the change of the fiber damage area and the fiber damage shape, the fiber damage area decreases firstly and then increases along the direction of fiber thickness, and the fiber damage shape changes from oval to elongated along the direction of thickness. With the fiber thickness increase, the specific energy absorption of Al/CF composite plate decreases linearly with the areal density increase. -
表 1 碳布和环氧树脂的材料参数
Table 1. Material parameters of carbon cloth and epoxy resin
Material Model σb/MPa E/GPa λ/% σf/MPa σbc/MPa ρA/(m·s−2) Carbon fiber UT70-30 3961 240 1.8 917 --- 300 Epoxy resin WB-674 T 50 2.62 2.8 67 76 --- Notes:σb is the tensile strength; E is the elastic modulus; σf is the flexural strength; σbc is the compressive strength; ρA is the areal density. 表 2 CF 力学参数
Table 2. CF mechanical parameters
ρ/(kg·m−3) E11/GPa E22/GPa E22/GPa ν12 ν13 ν23 1796.4 253.338 4.814 4.814 0.3 0.3 0.3 Xt/MPa Xc/MPa Yt/MPa Yc/MPa Zt Zc S12/MPa 3621 2624 26.25 56.50 26.25 56.50 69.70 S13/MPa 2.86 Notes:ρ is the density; E11, E22, E33 are the moduli of elasticity in the axial, tangential and normal directions; ν12、ν13、ν23 are the poisson's ratio, Xt, Yt, Zt are ultimate tensile strength, Xc, Yc, Zc are ultimate compressive strength, S12, S13, S23 are ultimate shear stress. 表 5 侵彻靶板数值模拟与实验数据对比
Table 5. Comparison of penetration target simulation and experimental data
Thickness/mm Structure Initial velocity/(m·s−1) Terminal velocity/(m·s−1) Error/% Simulation Experience 10.02 Al 1027.49 823.83 844.88 2.5 10.01 Al 861.67 682.44 658.75 3.6 10.01 Al 1020.48 822.30 835.62 1.6 10.01 Al 1283.26 1043.31 1093.19 4.6 10.00 Al 1091.24 879.88 856.74 2.7 12.72 Al/4CF 1010.14 784.35 794.27 1.3 12.70 Al/4CF 1378.16 1065.34 1193.97 1.1 14.20 Al/6CF 1048.13 798.47 777.00 2.8 15.50 Al/8CF 1006.73 670.38 679.29 1.3 17.20 Al/10CF 975.60 621.53 610.66 1.8 18.40 Al/12CF 954.95 577.39 574.30 0.5 -
[1] 肇研, 孙铭辰, 张思益等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285.ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285(in Chinese). [2] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3): 1229-1247.CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic compo-sites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1229-1247(in Chinese). [3] 刘凯. 冰冲击载荷作用下碳纤维复合材料层合板响应机理[D]. 中南大学, 2023.LIU Kai, Response mechanism of carbon fiber composite laminates under ice impact[D]. Central South University, 2023 (in Chinese). [4] CHEN L B, LIN X Y, BAI R S, Anti-bird-strike behavior of M40J carbon fiber reinforced plastic laminates[J], Composite Structures, 2024, 339: 118094. [5] ZHANG N, ZHOU G M, GUO X M, High-velocity impact damage and compression after impact behavior of carbon fiber composite laminates: Experimental study[J]. International Journal of Impact Engineering, 2023, 181: 104749. [6] SANCHEZ-GALVEZ V, GALVEZ F, SANCHO R, et al. A new analytical model to simulate high-speed impact onto composite materials targets[J]. International Journal of Impact Engineering, 2017, 108: 322-333. doi: 10.1016/j.ijimpeng.2017.04.024 [7] RATHNASABAPATHY M, MOURITZ A P, ORIFICI A C, Impact-under-load damage tolerance of a fibre metal laminate[J], Compo-site Structures, 2022, 287: 115368. [8] WEI S, ZHANG X, LI Y, et al. Study of the dynamic response and damage evolution of carbon fiber/ultra-thin stainless-steel strip fiber metal laminates under low-velocity impact[J]. Composite Structures, 2023, 330: 117772. [9] JAKUBCZAK P, PODOLAK P, Droździel-Jurkiewicz M. The assessment of the compressive strength of Fibre Metal Laminates after low-velocity impact[J]. Composite Structures, 2023, 320: 117208. doi: 10.1016/j.compstruct.2023.117208 [10] YUAN K, LIU K, WANG Z, et al. An investigation on the perforation resistance of laminated CFRP beam and square plate[J]. International Journal of Impact Engineering, 2021, 3: 103967. [11] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C]//AIP Conference Proceedings. Colorado, 1994: 981-984. [12] WEI G, HAO C, AI J Y, et al. Effect of lamination sequence and warhead shapeon impact resistance of fiber-metal laminates[J]. Polymer Composite, 2023, 44(12): 8510-8528. doi: 10.1002/pc.27716 [13] OBERG E K, DEAN J, CLYNE T W. Effect of inter-layer toughness in ballistic protection systems on absorption of projectile energy[J]. International Journal of Impact Engineering, 2015, 76: 75-82. doi: 10.1016/j.ijimpeng.2014.09.006 [14] YANG Y, CHEN X. Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact[J]. Textile Research Journal, 2017, 87(20): 2475-2486. doi: 10.1177/0040517516671129 [15] YANG Y, CHEN X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017, 164: 1-9. doi: 10.1016/j.compstruct.2016.12.057 [16] DONG Y, ZI F, YANG L, et al. Research on anti-penetration performance of composite armor of steel/composite materials[J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7035-7050. doi: 10.1080/15376494.2021.1991061 [17] ZHU Y H, MA J, FAN Z Q, et al. Ballistic impact performance and blunt injury assessment of ceramic/UHMWPE laminate composite body armor[J]. Journal of Materials Research and Technology, 2024, 29: 1703-1728. doi: 10.1016/j.jmrt.2024.01.140 [18] ZHOU Y S, ZHENG C S, Impact resistance performance and structural optimization of lightweight composite target plate[J]. Polymer Composites, 2024, 45(7): 6482-6497. [19] KARAHAN M, KUS A, Eren R. An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics[J]. International Journal of Impact Engineering, 2008, 35: 499-510. doi: 10.1016/j.ijimpeng.2007.04.003 [20] LIU J, LONG Y, JI C, et al. Influence of layer number and air gap on the ballistic performance of multi-layered targets subjected to high velocity impact by copper EFP[J]. International Journal of Impact Engineering, 2017, 112: 52-65. [21] BANDARU A K, AHMAD S, BHATNA-GAR N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 151-165. doi: 10.1016/j.compositesa.2016.12.007 [22] WANG Y, Chen X, Young R, et al. A numerical study of ply orientation on ballistic impact resistance of multi-ply fabric panels[J]. Composites Part B: Engineering, 2015, 68: 259-265. doi: 10.1016/j.compositesb.2014.08.049 [23] DENG Y F, WANG Y T, CAI X F, et al. Influence of thickness on impact resistance of glass fiber woven composite laminates[J]. Journal of Applied Polymer Science, 2023, 140(27): e53791 doi: 10.1002/app.53791 [24] LIAO B, ZHOU J, AI S, et al. Comparison of laminate thickness on the low velocity impact behaviors for Z-pinned composite laminates[J]. International Journal of Mechanical Sciences, 2021, 204: 106567. doi: 10.1016/j.ijmecsci.2021.106567 [25] 张辰, 饶云飞, 李倩倩等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1): 165-176.ZHANG Cheng, RAO Yunfei, LI Qianqian, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 165-176 (in Chinese). [26] 张徐梁, 阳玉球, 阎建华等. 碳纤维-玻璃纤维混杂增强环氧树脂三维编织复合材料薄壁圆管压溃吸能特性与损伤机制[J]. 复合材料学报, 2021, 38(9): 2814-2821.ZHANG Xuliang, YANG Yuqiu YAN Jianhua, et al. Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy 3D[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2814-2821 (in Chinese). [27] 吴龙强, 欧云福, 茅东升等. 取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制[J]. 复合材料学报, 2023, 40(10): 5611-5620.WU Longqiang, OU Yunfu, MAO D S, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620 (in Chinese). [28] REU, P. All about speckles: speckle size measurement, Experimental Techniques, 2014, 38(6): 1-2. [29] REU, P. All about speckles: aliasing, Experimental Techniques, 2014, 38(5): 1-3. [30] ZHANG F, LIN Y, WU JA, et al. Comparison of stacking seq-uence on the low-velocity impact failure mechanisms and energy dissipation characteristics of CFRP/Al hybrid laminates[J]. Polymer Composites, 2022, 43(8): 5544-5562. doi: 10.1002/pc.26867 [31] MEGERI S, NAIK G N. Numerical studies of the low velocity impact behaviour on hybrid fiber metal laminates[J]. Materiald Today: Proceedings, 2021, 44(1): 1860-1864. [32] 刘铁, 史洪刚, 程新等. 钨合金帽型试样的绝热剪切带数值模拟研究[J]. 兵器材料科学与工程, 2008, 227(2): 75-79.LIU Tie, SHI Honggang, CHENG X, et al. Numerical simulation for adiabatic shear bands of WHA in hat specimen[J]. Ordnance Materials Science and Engineering, 2008, 227(2): 75-79 (in Chinese). [33] 王雷, 李玉龙, 索涛等. 航空常用铝合金动态拉伸力学性能探究[J]. 航空材料学报, 2013, 33(4): 71-77.WANG Lei, LI Yulong, SUO Tao, et al. Mechanical Behavior of Commonly Used Aeronautical Aluminum Alloys under Dynamic Tension[J]. Journal of Aeronautical Materials, 2013, 33(4): 71-77 (in Chinese). [34] HAN Q, LI H, CHEN X, et al. Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp[J]. Composite Structures, 2022, 291: 115551. doi: 10.1016/j.compstruct.2022.115551 [35] SHARMA A P, KHAN S H. Influence of metal layer distribution on the projectiles impact response of glass fiber reinforced aluminum laminates[J]. Polymer Testing, 2018, 70: 320-347. doi: 10.1016/j.polymertesting.2018.07.005 [36] GAO Y, SHI L, LU T, et al. Ballistic and delamination mechanism of CFRP/aluminum laminates subjected to high velocity impact[J]. Engineering Fracture Mechanics, 2024, 295: 109797. doi: 10.1016/j.engfracmech.2023.109797 [37] BLAND P W, DEAR J P. Observations on the impact behaviour of carbon-fibre reinforced polymers for the qualitative validation of models[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1217-1227. doi: 10.1016/S1359-835X(01)00076-8 [38] TALREJA R, SINGH C V. Damage and Failure of Composite Materials | | Micro-damage mechanics[M]. 2012, 235-280. [39] NUNES L M, PACIORNIK S, d’Almeida JRM. Evaluation of the damaged area of glass-fiber-reinforced epoxy-matrix composite materials submitted to ballistic impacts[J]. Compos Sci Technol, 2004, 64: 945-954. doi: 10.1016/S0266-3538(03)00105-2 [40] DONG Y L, YANG L H, JIN Z Q, et al. Experimental and numerical analysis of ballistic impact responseof fiber-reinforced composite/metal composite target[J]. Composite Struc-tures, 2022, 294: 115776. doi: 10.1016/j.compstruct.2022.115776
计量
- 文章访问数: 52
- HTML全文浏览量: 23
- 被引次数: 0