留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于渗流技术制备的新型CuAlNi/Al 复合材料阻尼和力学行为

郝刚领 张江 雷波 王幸福 许巧平 王伟国 王新福

郝刚领, 张江, 雷波, 等. 基于渗流技术制备的新型CuAlNi/Al 复合材料阻尼和力学行为[J]. 复合材料学报, 2024, 41(1): 438-447. doi: 10.13801/j.cnki.fhclxb.20230511.002
引用本文: 郝刚领, 张江, 雷波, 等. 基于渗流技术制备的新型CuAlNi/Al 复合材料阻尼和力学行为[J]. 复合材料学报, 2024, 41(1): 438-447. doi: 10.13801/j.cnki.fhclxb.20230511.002
HAO Gangling, ZHANG Jiang, LEI Bo, et al. Damping and mechanical properties of novel CuAlNi/Al composites prepared by infiltration technique[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 438-447. doi: 10.13801/j.cnki.fhclxb.20230511.002
Citation: HAO Gangling, ZHANG Jiang, LEI Bo, et al. Damping and mechanical properties of novel CuAlNi/Al composites prepared by infiltration technique[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 438-447. doi: 10.13801/j.cnki.fhclxb.20230511.002

基于渗流技术制备的新型CuAlNi/Al 复合材料阻尼和力学行为

doi: 10.13801/j.cnki.fhclxb.20230511.002
基金项目: 国家自然科学基金(52061038;51661032;51301150); 陕西省青年科技新星人才专项 (2013KJXX-11)
详细信息
    通讯作者:

    郝刚领,博士,教授,硕士生导师,研究方向为金属基高阻尼复合材料 E-mail: glhao@issp.ac.cn

    许巧平,本科,高级实验师,研究方向为超轻泡沫金属材料及其应用 E-mail: xiaoppingxu@126.com

  • 中图分类号: TB331;TG146

Damping and mechanical properties of novel CuAlNi/Al composites prepared by infiltration technique

Funds: National Natural Science Foundation of China (52061038; 51661032; 51301150); Special Program of Youth New-star of Science and Technology of Shaanxi Province, China (2013KJXX-11)
  • 摘要: 选用CuAlNi形状记忆合金作为阻尼增强相,设计并制备了新型枣糕状CuAlNi/Al复合材料。制备过程主要由两个步骤组成,首先基于造孔剂颗粒的空间占位和溶除,通过粉末冶金工艺制备了CuAlNi泡沫,随后在此基础上,采用真空负压渗流技术制备了CuAlNi/Al复合材料。详细考察了复合材料的微观结构、阻尼和压缩力学性能。内耗测试表明,CuAlNi/Al复合材料可以实现超高的阻尼能力,远高于相应的Al基体,在室温附近的阻尼值甚至是纯Al的6倍。复合材料优异的阻尼能力不仅来源于CuAlNi合金增强相的高本征阻尼能力,还与CuAlNi和纯Al之间引入的弱结合界面阻尼及复合材料中与残余微孔相关的附加阻尼有关。此外,当CuAlNi/Al复合材料中Al体积分数高于59.5vol%时,具有和纯Al相似的压缩应力-应变曲线和形变机制,但呈现更高的压缩力学强度和能量吸收能力。

     

  • 图  1  CuAlNi泡沫和CuAlNi/Al复合材料制备过程示意图

    Figure  1.  Illustration of preparation processing of CuAlNi foam and CuAlNi/Al composite

    图  2  (a) CuAlNi 泡沫;(b) CuAlNi/Al复合材料

    Figure  2.  (a) CuAlNi foams; (b) CuAlNi/Al composites

    图  3  CuAlNi 泡沫((a1), (a2))和CuAlNi/Al复合材料((b1), (b2))的宏观形貌

    Figure  3.  Macromorphologies of CuAlNi foam ((a1), (a2)) and CuAlNi/Al composite ((b1), (b2))

    图  4  CuAlNi/Al 复合材料微观形貌:((a)~(c)) 倍率不同的微观结构;(d) CuAlNi合金和纯Al间界面结构(虚线包围区域);(e) CuAlNi 微观结构(矩形区域孔壁上大孔被纯Al填充);(f) CuAlNi 微观结构(其中椭圆区域孔壁上小孔或闭孔未被纯Al填充)

    Figure  4.  Micromorphologies of CuAlNi/Al composites: ((a)-(c)) Microstructures with various magnification; (d) Interface between pure Al and CuAlNi alloy as the area surrounded by dotted lines; (e) CuAlNi microstructure containing macropores filled by pure Al in rectangular region; (f) CuAlNi microstructure containing micropores or closed pores not filled by pure Al in elliptic region

    图  5  CuAlNi/Al 复合材料中纯Al体积分数与CuAlNi泡沫真实孔隙率和理论孔隙率的依赖关系

    Figure  5.  Dependence of Al volume percent in CuAlNi/Al composite on actual and theoretical porosity of CuAlNi foam

    图  6  CuAlNi/Al复合材料压缩应力-应变曲线:(a) 复合材料和纯Al,其中复合材料中纯Al体积分数高于59.5vol%;(b) 复合材料和CuAlNi泡沫,其中复合材料中纯Al体积分数低于52.2vol% (插图为孔隙率75.7%的CuAlNi泡沫)

    Figure  6.  Compressive stress-strain curves of CuAlNi/Al composites: (a) Composites and pure Al, where the Al volume percent in the composites is more than 59.5vol%; (b) Composites and CuAlNi foam, where the Al volume percent in the composites is less than 52.2vol% (Inset shows the compressive curve of CuAlNi foam with the porosity of 75.7%)

    图  7  不同应变下原位压缩图像:(a) CuAlNi/Al复合材料;(b) 纯Al;(c) CuAlNi泡沫

    Figure  7.  In-situ compressive images at different strains: (a) CuAlNi/Al composite; (b) Pure Al; (c) CuAlNi foam

    图  8  CuAlNi/Al 复合材料的吸能能力

    Figure  8.  Energy-absorption capacity C of CuAlNi/Al composites

    图  9  内耗(IF)-温度谱:(a) CuAlNi/Al 复合材料;(b) 纯Al

    Figure  9.  Internal friction (IF)-temperatur spectra: (a) CuAlNi/Al composite; (b) Pure Al

    图  10  CuAlNi/Al复合材料内耗与升温速率依赖关系

    Figure  10.  Dependence of internal friction of CuAlNi/Al composite on heating rate

    图  11  CuAlNi/Al复合材料与CuAlNi泡沫内耗比较

    Figure  11.  Comparison of internal friction of CuAlNi/Al composite and CuAlNi foam

  • [1] LI G C, MA Y, HE X L, et al. Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process[J]. Transactions of Nonferrous Metals Society of China,2012,22:1112-1117. doi: 10.1016/S1003-6326(11)61291-0
    [2] RAHIMAN A H S, SMART D S R. Damping characteristics of aluminium matrix composites—A review[J]. Materials Today: Proceedings,2019,11:1139-1143. doi: 10.1016/j.matpr.2018.12.048
    [3] TSIMOURI I C, MONTIBELLER S, KERN L, et al. A simulation-driven design approach to the manufacturing of stiff composites with high viscoelastic damping[J]. Composites Science and Technology,2021,208:108744. doi: 10.1016/j.compscitech.2021.108744
    [4] JIAO Z X, WANG Q Z, YIN F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties[J]. Carbon,2022,188:45-58. doi: 10.1016/j.carbon.2021.11.055
    [5] WILLIAMS J C, STARKE E A. Process in structural materials for aerospace systems[J]. Acta Materialia,2003,51(19):5775-5799. doi: 10.1016/j.actamat.2003.08.023
    [6] LIU F C, MA Z Y, ZHANG F C. High strain rate superplasticity in a micro-grained Al-Mg-Sc alloy with predominant high angle grain boundaries[J]. Journal of Materials Science & Technology,2012,28(11):1025-1030.
    [7] JIANG H J, LIU C Y, ZHANG B, et al. Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing[J]. Materials Characterization,2017,131:425-430. doi: 10.1016/j.matchar.2017.07.037
    [8] WANG W, YI D Q, HUA W, et al. High damping capacity of Al-40Zn alloys with fine grain and eutectoid structures via Yb alloying[J]. Journal of Alloys and Compounds,2021,870:159485. doi: 10.1016/j.jallcom.2021.159485
    [9] JIANG H J, LIU C Y, CHEN Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. doi: 10.1016/j.jallcom.2017.12.234
    [10] ZHANG Z H, XIAO F X, WANG Y W, et al. Mechanism of improving strength and damping properties of powder-extruded Al/Zn composite after diffusion annealing[J]. Transactions of Nonferrous Metals Society of China,2018,28:1928-1937. doi: 10.1016/S1003-6326(18)64838-1
    [11] ZHANG Z M, HU B, GAO F T, et al. Room-temperature damping capacity of Al2O3P/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28(4):130-135.
    [12] XIAO C J. A study on the damping capacity of BaTiO3-reinforced Al-matrix composites[J]. Bulletin of Materials Science,2016,39(2):463-467. doi: 10.1007/s12034-016-1171-5
    [13] WENG W, WANG H W, MA N H, et al. Effect of domain structure on the damping properties of LiNbO3/Al composites[J]. Materials & Design,2010,31(9):4116-4121.
    [14] ZHANG Y J, MA N H, WANG H W, et al. Effect of Ti on the damping behavior of aluminum composite reinforced with in situ TiB2 particulate[J]. Scripta Materialia, 2005, 53(10): 1171-1174.
    [15] ZHANG Y J, MA N H, WANG H W. Effect of particulate/Al interface on the damping behavior of in situ TiB2 reinforced aluminium composite[J]. Materials Letters,2007,61(14-15):3273-3275. doi: 10.1016/j.matlet.2006.11.052
    [16] EMADODDIN E, TAJALLY M, MASOUMI M. Damping behavior of Al/SiCp multilayer composite manufactured by roll bonding[J]. Materials & Design,2012,42:334-338. doi: 10.1016/j.matdes.2012.06.009
    [17] ZHANG Y J, MA N H, LI X F, et al. Study on damping capacity of aluminum composite reinforced with in situ TiAl3 rod[J]. Materials & Design,2008,29(5):1057-1059.
    [18] JIA C L. Study on damping behavior of FeAl3 reinforced commercial purity aluminum[J]. Materials & Design,2007,28(5):1711-1713.
    [19] YU Y H, WU X N, XU P. Research on damping of foamed Al composite filled epoxy resin in the holes[J]. Advanced Materials Research,2011,146-147:318-322.
    [20] JIANG Z H, CAI H Y, CHEN X L, et al. Improving the mechanical and damping properties of polymer/memory alloy composite by introducing nanotubes covered with nano-scale Ni particles[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106856. doi: 10.1016/j.compositesa.2022.106856
    [21] JIANG Z H, WANG F M J, YIN J L, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites[J]. Composites Part B: Engineering,2020,199:108266. doi: 10.1016/j.compositesb.2020.108266
    [22] JI X W, WANG Q Z, YIN F X, et al. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites[J]. Composites Part A: Applied Science and Manufacturing,2018,107:21-30. doi: 10.1016/j.compositesa.2017.12.013
    [23] HU J, WU G H, ZHAGN Q, et al. Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle[J]. Composites Part B: Engineering, 2014, 66: 400-406.
    [24] HAN F S, ZHU Z G, GAO J C. Compressive deformation and energy absorbing characteristic of foamed aluminum[J]. Metallurgical and Materials Transactions A,1998,29:2497-2502. doi: 10.1007/s11661-998-0221-z
    [25] ASHBY M F. The mechanical properties of cellular solids[J]. Metallurgical Transaction A,1981,14(9):1755-1769.
    [26] 何德坪. 超轻多孔金属[M]. 北京: 科学出版社, 2008: 337.

    HE Deping. Ultralight porous metal[M]. Beijing: Science Press, 2008: 337(in Chinese).
    [27] 雷波, 郝刚领, 李育川, 等. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24):21090026. doi: 10.11896/cldb.21090026

    LEI Bo, HAO Gangling, LI Yuchuan, et al. Effect of cooling rates on damping behavior of CuAlNi shape memory alloy[J]. Materials Report,2022,36(24):21090026(in Chinese). doi: 10.11896/cldb.21090026
    [28] WANG Q Z, HAN F S, WANG Q. Low frequency damping behavior of CuAlMn shape memory alloys[J]. Physica Status Solidi A,2004,201:2910-2914.
    [29] LIU X J, WANG Q Z, KONDRAT'EV SERGEY Y, et al. Microstructural, mechanical, and damping properties of a Cu-based shape memory alloy refined by an in situ LaB6/Al inoculant[J]. Metallurgical and Materials Transacton A,2019,50:2310-2321. doi: 10.1007/s11661-019-05153-9
    [30] SURESH N, RAMAMURTY U. Aging response and its effect on the functional properties of Cu-Al-Ni shape memory alloys[J]. Journal of Alloys and Compounds,2008,449:113-118. doi: 10.1016/j.jallcom.2006.02.094
    [31] ZHANG J M, PEREZ R J, WONG C R, et al. Effects of secondary phases on the damping behavior of metals, alloys and metal matrix composites[J]. Materials Science and Engineering: R: Reports,1994,13(8):325-389. doi: 10.1016/0927-796X(94)90010-8
    [32] LEDERMAN W A. The damping properties of composite materials[D]. Milwaukee: University of Wisconsin-Milwaukee, 1991.
    [33] 刘长松, 韩福生, 朱震刚. 泡沫铝的低频内耗特征研究[J]. 物理学报, 1997, 46(8):1585-1592. doi: 10.3321/j.issn:1000-3290.1997.08.018

    LIU Changsong, HAN Fusheng, ZHU Zhengang. Internal fricton features of Al in-lower frequency[J]. Acta Physica Sinica,1997,46(8):1585-1592(in Chinese). doi: 10.3321/j.issn:1000-3290.1997.08.018
    [34] ZHANG J, PEREZ R J, LAVERNIA E J. Effect of SiC and graphite particulates on the damping behavior of metal matrix composites[J]. Acta Metallurgica et Materialia,1994,42(2):395-409. doi: 10.1016/0956-7151(94)90495-2
  • 加载中
图(11)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  240
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-04-25
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-05-11
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回