留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CNT包覆三维聚乙烯-聚丙烯(ES)/PET非织造基柔性压力传感器的制备及性能

高星 张蕊 应迪 郑莹莹 王建 邹专勇

高星, 张蕊, 应迪, 等. CNT包覆三维聚乙烯-聚丙烯(ES)/PET非织造基柔性压力传感器的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 高星, 张蕊, 应迪, 等. CNT包覆三维聚乙烯-聚丙烯(ES)/PET非织造基柔性压力传感器的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-10.
GAO Xing, ZHANG Rui, YING Di, et al. Preparation and performance of CNT impregnating 3D Ethylene-Propylene Side By Side (ES)/PET nonwoven-based flexible pressure sensors[J]. Acta Materiae Compositae Sinica.
Citation: GAO Xing, ZHANG Rui, YING Di, et al. Preparation and performance of CNT impregnating 3D Ethylene-Propylene Side By Side (ES)/PET nonwoven-based flexible pressure sensors[J]. Acta Materiae Compositae Sinica.

CNT包覆三维聚乙烯-聚丙烯(ES)/PET非织造基柔性压力传感器的制备及性能

基金项目: 浙江省教育厅一般科研项目(Y202351466);国家级大学生创新创业训练计划(202310349047)
详细信息
    通讯作者:

    王建,博士,讲师,硕士生导师,研究方向为纤维新材料及柔性智能可穿戴纺织品 E-mail: jwang@usx.edu.cn

  • 中图分类号: TB332

Preparation and performance of CNT impregnating 3D Ethylene-Propylene Side By Side (ES)/PET nonwoven-based flexible pressure sensors

Funds: General Scientific Research Project of Zhejiang Education Department (No.Y202351466); National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 202310349047)
  • 摘要: 为克服柔性传感器在灵敏度较低、生产流程复杂以及透气性不足等方面的挑战,本研究通过针刺-热熔技术制备了一种三维聚乙烯-聚丙烯(Ethylene-Propylene Side By Side,ES)/聚酯(PET)纤维非织造材料。随后,利用碳纳米管(CNT)对该材料进行浸渍处理,成功开发了一种性能优异的CNT包覆三维ES/PET非织造基压力传感器,并对比分析了不同CNT浸渍时间和浸渍次数对传感器性能的影响。研究结果显示,该CNT包覆三维ES/PET非织造基柔性压力传感器具有高达0.375 kPa−1的灵敏度和0-214.53 kPa的检测范围。经过2100次压缩循环,传感器展现了优异的稳定性和可重复性,响应时间为48 ms,恢复时间为122 ms。在实际应用中,该传感器能够精确识别如呼吸、吞咽、手指弯曲等人体细微生理活动,在运动、医疗、虚拟现实等多个领域具有潜在的广泛应用。

     

  • 图  1  3 D ES/PET非织造基布制备流程图

    Figure  1.  Flow chart of 3 D ES/PET nonwoven fabric preparation

    图  2  CNT包覆三维ES/PET非织造基压力传感器制备流程图

    Figure  2.  Preparation flow chart of CNT impregnating 3 D ES/PET nonwoven-based pressure sensor

    图  3  三维ES/PET非织造布实物图: (a)浸渍CNT前后非织造布实物图; (b) CNT包覆三维ES/PET非织造布厚度; (c)弯曲状态; (d)挤压状态

    Figure  3.  3 D ES/PET nonwoven physical picture: (a) Physical drawings of the fabric before and after CNT impregnation; (b) Thickness of CNT impregnating 3 D ES/PET nonwoven; (c) Bending; (d) Extrusion

    图  4  非织造材料在CNT溶液中浸渍不同时间的SEM图; ((a1)~(a3))未经过浸渍处理; ((b1)~(b3))浸渍5分钟; ((c1)~(c3))浸渍10分钟; ((d1)~(d3))浸渍15分钟

    Figure  4.  SEM images of nonwoven materials immersed in CNT solution for different durations; ((a1)~(a3)) untreated; ((b1)~(b3)) immersed for 5 minutes; ((c1)~(c3)) immersed for 10 minutes; ((d1)~(d3)) immersed for 15 minutes

    图  5  非织造材料在CNT溶液中浸渍不同次数的SEM图; ((a1)~(a3))浸渍15分钟 1次; ((b1)~(b3))浸渍15分钟 2次; ((c1)~(c3))浸渍15分钟 3次; ((d1)~(d3))浸渍15分钟 4次

    Figure  5.  SEM images of nonwoven materials immersed in CNT solution for different numbers of cycles; ((a1)~(a3)) immersed for 15 minutes, one cycle; ((b1)~(b3)) immersed for 15 minutes, two cycle; ((c1)~(c3)) immersed for 15 minutes, three cycle; ((d1)~(d3)) immersed for 15 minutes, four cycle

    图  6  CNT浸渍不同时间所制备出三维ES/PET非织造基压力传感器的相对电阻变化曲线

    Figure  6.  The relative resistance change curve of the CNT impregnating 3 D ES/PET nonwoven-based pressure sensor prepared by immersing CNT for different durations.

    图  7  CNT浸渍15分钟所制备三维ES/PET非织造基压力传感器的灵敏度曲线图

    Figure  7.  The sensitivity curve of the CNT impregnating 3 D ES/PET nonwoven-based pressure sensor prepared by immersing CNT for 15 minutes.

    图  8  CNT浸渍15分钟 不同循环次数所制备出三维ES/PET非织造基压力传感器的相对电阻变化曲线

    Figure  8.  The relative resistance change curve of CNT impregnating 3 D ES/PET nonwoven-based pressure sensor prepared with CNT immersion for 15 minutes at different cycle numbers.

    图  9  经过三次循环CNT浸渍15分钟处理的三维ES/PET非织造基压力传感器灵敏度曲线图

    Figure  9.  The sensitivity curve of the CNT impregnating 3 D ES/PET nonwoven-based pressure sensor prepared with CNT immersion for 15 minutes at 3 cycle numbers.

    图  10  三维ES/PET非织造基压力传感器的响应和恢复时间曲线图: (a)响应时间; (b)恢复时间

    Figure  10.  Response and recovery time curves of the CNT impregnating 3 D ES/PET nonwoven-based pressure sensor: (a) Response time;(b) Relaxation time

    图  11  三维ES/PET非织造基压力传感器经过2100次压力循环耐久性实验

    Figure  11.  Durability test of the CNT impregnating 3D ES/PET nonwoven-based pressure sensor after 2100 pressure cycles

    图  12  三维ES/PET非织造基压力传感器的机制图

    Figure  12.  Mechanism diagram of CNT impregnating 3 D ES/PET nonwoven-based pressure sensor

    图  13  三维ES/PET非织造基压力传感器在关节弯曲状态下的应用性测试: (a)手指弯曲; (b)膝盖弯曲; (c)握拳; (d)手腕弯曲; (e)手肘弯曲

    Figure  13.  Application test of CNT impregnating 3 D ES/PET nonwoven-basedpressure sensor in joint curvature: (a) Curved fingers; (b) Knee bending;(c) Clench fist; (d) Wrist bending; (e) Elbow bending

    图  14  三维ES/PET非织造基压力传感器在生活常见活动监测中的应用: (a)不同频率手指点击; (b)不同力度手指点击; (c)吞咽; (d)不同频率鼠标点击; (e)摩斯密码; (f)呼吸监测

    Figure  14.  Application of CNT impregnating 3 D ES/PET nonwoven-based pressure sensor in the monitoring of common activities of life: (a) Finger clicks of different frequencies; (b) Finger clicks of varying intensity; (c) Swallowing; (d) different frequency of mouse clicks; (e) Morse Code; (f) Respiratory monitoring

    表  1  三维ES/PET非织造布性能测试

    Table  1.   Performance testing of 3 D ES/PET nonwovens

    Performances Thicknesses/mm Surface density/
    (g/100 cm2)
    Permeability/
    (mm·s−1)
    Breaking
    strength/N
    Elongation
    at break/%
    Breaking strength/
    (cN·cm−2)
    1# 5.63 2.32 1990 53.50 103.20 1.07
    2# 5.69 2.61 2380 63.30 116.50 1.27
    3# 5.62 2.56 2210 70.00 113.90 1.40
    Average value 5.65 2.50 2193.33 62.27 111.20 1.25
    下载: 导出CSV

    表  2  柔性压阻传感器性能对比表

    Table  2.   Performance comparison table of flexible piezoresistive sensors

    Electrode Type Structure Sensitivity/kPa−1 Detect Range/kPa Response time/
    ms
    Ref
    Silver nanowires Piezoresistive 3 D porous microstructured 0.014 0-100 64 [27]
    Expandable graphite Piezoresistive Planar structure 0.15 0.1-110 - [28]
    Reduced graphene oxide Piezoresistive Polyurethane foam 0.17 0-25 300 [29]
    Reduced graphene oxide Piezoresistive 3 D porous microstructured 0.009 0-180 13 [30]
    Reduced graphene oxide Piezoresistive Polyurethane sponge 0.13 0-30 - [31]
    CNT Piezoresistive 3 D nonwoven 5.57% 0-131.32 105 [32]
    CNT Piezoresistive 3 D ES/PET
    network structure
    0.375 0-214.5 48 This work
    下载: 导出CSV
  • [1] 李港华, 王航, 史宝会等. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(2): 96-102.

    LI Ganghua, WANG Hang, SHI Baohui, et al. Construction of flexible electronic fabric and its Pressure Sensing Performance[J]. Journal of Textile Research, 2023, 44(2): 96-102(in Chinese).
    [2] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 82-92. doi: 10.11896/cldb.20040214

    LEI Peng, BAO Yan. Research progress of flexible piezoresistive sensor based on MXene[J]. Materials Review, 2022, 36(14): 82-92(in Chinese). doi: 10.11896/cldb.20040214
    [3] LIU Z, ALEXIS P M. Advancing Smart Biomedical Textiles with Humanoid Robots[J]. Advanced Fiber Materials, 2024, 6(1): 1-2. doi: 10.1007/s42765-023-00357-6
    [4] 汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737.

    TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737.
    [5] ZHANG S, SUN X, et al. A Wide-Range-Response Piezoresistive-Capacitive Dual-Sensing Breathable Sensor with Spherical-Shell Network of MWCNTs for Motion Detection andLanguage Assistance[J]. Nanomaterials, 2023, 13(5): 843-843. doi: 10.3390/nano13050843
    [6] 王菲菲, 彭海益, 姚晓刚. 基于多向冷冻法制备的高灵敏度柔性电容式压力传感器[J]. 复合材料学报, 2023, 40(5): 2680-2687.

    WANG Feifei, PENG Haiyi, YAO Xiaogang. High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2680-2687.
    [7] LI L, ZHOU X, JIN B, et al. Highly compressible, breathable, and waterproof piezoresistive sensors based on commercial three-dimensional air-laid nonwovens[J]. Colloid and Polymer Science, 2023, 302(3): 449-461.
    [8] TIAN G, SHI Y, et al. Low-Cost, Scalable Fabrication of All-Fabric Piezoresistive Sensors via Binder-Free, In-Situ Welding of Carbon Nanotubes on Bicomponent Nonwovens[J]. Advanced Fiber Materials, 2023, 6(1): 120-132.
    [9] JIANG H, ZHANG J, Qin M, et al. A flexible piezoresistive strain sensor based on black phosphorus/gold nanocomposites interspersed sponge for motion sensing[J]. Sensors and Actuators A: Physical, 2023, 356: 114359. doi: 10.1016/j.sna.2023.114359
    [10] CHEN K Y, XU Y T, et al. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries[J]. Nano Materials Science, 2023, 5(3): 247-264. doi: 10.1016/j.nanoms.2021.11.003
    [11] DUCLOUÉ L, HAQUE M A, GORAL M, et al. Color-switching hydrogels as integrated microfluidic pressure sensors[J]. ScientificReports, 2024, 14(1): 6333.
    [12] ZHANG D, WANG Y, SUN S, et al. Ceramic hybrid nanofiber-based elastic scaffold pressure sensor with good sensitivity, breathability, and washability[J]. Ceramics International, 2024, 50(2): 3453-3460. doi: 10.1016/j.ceramint.2023.11.093
    [13] 郭鑫雷, 刘鑫, 胡汉春等. 多孔聚二甲基硅氧烷/碳纳米管复合压阻式柔性压力传感器的制备[J]. 轻工机械, 2023, 41(2): 34-41. doi: 10.3969/j.issn.1005-2895.2023.02.006

    GUO Xinlei, LIU Xin, HU Hanchun, et al. Fabrication of piezoresistive flexible pressure sensor with porous polydimethylsiloxane/carbon nanotubes[J]. Light industry machinery, 2023, 41(2): 34-41(in Chinese). doi: 10.3969/j.issn.1005-2895.2023.02.006
    [14] DING X H, CAO H L, ZHANG X H, et al. Large scale trib-electric nanogenerator and self-powered flexible sensor for human sleep monitoring[J]. Sensors, 2018, 18(6): 17.
    [15] JIAO H, YANG K, SANG S , et al. Graphene-based flexible temperature/pressure dual-mode sensor as a finger sleeve for robotic arms[J]. Diamond Related Materials, 2024, 142: 110799.
    [16] ARNALDO L J, VINICIUS C, et al. Low-cost and high-resolution pressure sensors using highly stretchable polymer optical fibers[J]. Materials Letters, 2020, 271: 127810. doi: 10.1016/j.matlet.2020.127810
    [17] WANG P, MA X, LIN Z, et al. Well-defined in-textile photolithography towards permeable textile electronics.[J]. Nature communications, 2024, 15(1): 887-887. doi: 10.1038/s41467-024-45287-y
    [18] KAMONWAN C, ALBERT S. Dip-coated carbon nanotube surface deposits as stable, effectiveresponse enhancers in pencil lead electrode voltammetry.[J]. RSC advances, 2023, 13(46): 2672-32680.
    [19] FUJIKI H, TOBASE K, MUGURUMA H. Electrochemical determination of the procyanidins inpeanut skin using a carbon nanotube electrode.[J]. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 2024, 40(3): 549-553.
    [20] JU B, FENG T, et al. Influence of ambient temperature and structural parameters on thermal conductivity of carbon nanotube arrays after secondary segmentation[J]. International Journal of Heat and Mass Transfer, 2023, 21: 124154.
    [21] ZHAO Y, SHEN T, ZHANG M , et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343-350.
    [22] WU J Y, QIAN Y, et al. Strength prediction based on ultrasonic property of fractal gangue cemented rockfill reinforced by carbon nanotubes[J]. Construction and Building Materials, 2021, 303: 124444. doi: 10.1016/j.conbuildmat.2021.124444
    [23] RAJRATAN B, GERMANO S, et al. Dielectric hysteresis, relaxation dynamics, and nonvolatile memory effect in carbon nanotube dispersed liquid crystal[J]. Journal of Applied Physics, 2009, 106(12): 124312. doi: 10.1063/1.3272080
    [24] RASHID I A, IRFAN M S, Gill Y O, et al. Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends[J]. Polymer Bulletin, 2020, 77: 1081-1093. doi: 10.1007/s00289-019-02796-x
    [25] PROSUNG R, ARTHITTAYA C, et al. Rapid formation of carbon nanotubes-natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration.[J]. Discover nano, 2024, 19(1): 30-30. doi: 10.1186/s11671-024-03970-5
    [26] PATSAKORN L, SURANGSEE D. Effect of CNT on the Physical and Electrical Properties of CNT/UHMWPE Nanocomposite Sensor[J]. Materials Science Forum, 2023, 1103: 75-85. doi: 10.4028/p-Cnf88n
    [27] JING M Y, ZHOU J, ZHANG P C, et al. Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55119-55129.
    [28] 秦文峰, 王新远, 李亚云, 等. 基于膨胀石墨/聚二甲基硅氧烷复合材料的柔性压力传感器及加热除冰的应用[J]. 复合材料学报, 2021, 38(2): 461-469.

    QIN Wenfeng, WANG Xinyuan, LI Yayun, et al. Flexible piezoresistive sensor and heating de-icing performance based on expanded graphite/polydimethylsiloxane composite[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 461-469(in Chinese).
    [29] ZHONG W, DING X, LI W, et al. Facile fabrication of conductive graphene/polyurethane foam composite and its application on flexible piezo-resistive sensors[J]. Polymers, 2019, 11(8): 1289. doi: 10.3390/polym11081289
    [30] JIA, J M, YANG, Y. , CAI, B, et al. A 3D honeycomb graphene structure for wearable piezoresistive pressure sensor with high sensitivity[J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 2003-2011. doi: 10.1007/s10854-021-07403-2
    [31] GILANIZADEHDIZAJ G, AW K C, STRINGER J, et al. Facile fabrication of flexible piezo-resistive pressure sensor array using reduced graphene oxide foam and silicone elastomer[J]. Sensors and Actuators A: Physical, 2022, 340: 113549. doi: 10.1016/j.sna.2022.113549
    [32] TIAN G, ZHAN L, DENG J, et al. Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wear-able and high-performance piezoresistive sen-sors[J]. Chemical Engineering Journal, 2021, 425: 130682. doi: 10.1016/j.cej.2021.130682
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-06-12
  • 录用日期:  2024-06-13
  • 网络出版日期:  2024-06-27

目录

    /

    返回文章
    返回