留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用

骆懿 廖海 赵治栋 王金鹏 吴颖

骆懿, 廖海, 赵治栋, 等. 基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 骆懿, 廖海, 赵治栋, 等. 基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用[J]. 复合材料学报, 2023, 41(0): 1-10
Yi LUO, Hai LIAO, Zhidong ZHAO, Jingpeng WANG, Ying WU. Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard[J]. Acta Materiae Compositae Sinica.
Citation: Yi LUO, Hai LIAO, Zhidong ZHAO, Jingpeng WANG, Ying WU. Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard[J]. Acta Materiae Compositae Sinica.

基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用

详细信息
    通讯作者:

    赵治栋,博士,教授,博士生导师,研究方向为生物医学信号处理和医学人工智能技术等 E-mail: zhaozd@hdu.edu.cn

  • 中图分类号: TP212.3

Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard

  • 摘要: 在各种制作压力传感器的有机材料中,聚偏氟乙烯(PVDF)具有良好的生物相容性和压电灵敏度。但相比于无机压电材料,PVDF及其共聚物压电系数较低,限制了其作为压力传感器和能量收集器的性能。为了更低成本的制备出压电性更好且柔软度高的复合膜,本文通过静电纺丝法,制备了基于BiCl3/P(VDF-TrFE)复合膜的柔性纳米压电薄膜传感器。一定含量BiCl3加入后,扫描电子显微镜分析结果呈现纤维平均直径从619nm增至1158nm,且表面更趋光滑,X射线衍射图证实复合膜的β相含量得到了明显提高。压电响应测试结果显示,BiCl3含量为2wt%的P(VDF-TrFE)复合膜开路峰峰值电压和短路电流分别为16.8V、164nA,相比纯P(VDF-TrFE)压电薄膜有明显提升,分别提升了115%、180%。压力感知实验显示,压电薄膜在1.28N的按压力以下,具有较好的线性输出特性。作者利用该复合膜设计了一款柔性可穿戴力感知键盘,该键盘有采集按压力度和持续时间的功能,为柔性键盘等智能织物相关应用提供了参考。P(VDF-TrFE)的特性及应用(a)和BiCl3改性后的开路电压(b)

     

  • 图  2  柔性纳米压电薄膜及传感器制备: (a)实验流程示意图 (b)传感器结构示意图 (c)封装后的传感器光学照片

    Figure  2.  Preparation of flexible nano piezoelectric films and sensors: (a) Schematic diagram of experiment flow (b) Schematic diagram of sensor structure (c) Photographs of the prepared sensor devise

    图  1  静电纺丝系统示意图

    Figure  1.  Schematic diagram for the electrospinning system

    图  3  不同浓度的 BiCl3/P(VDF-TrFE)复合膜 SEM 电镜结果:(a) 0wt% ;(b)2wt% ;(c) 5wt%;(d)0wt% BiCl3 复合 膜的纤维直径统计;(e) 2wt% BiCl3 复合膜的纤维直径统计;(f) 0wt%单根纤维;(g) 2wt% BiCl3 单根纤维.

    Figure  3.  SEM results of BiCl3/P(VDF-TrFE) composite membranes with different concentrations:(a) 0wt%;(b) 2wt% (c) 5wt% (d) The diameter distribution of 0wt% BiCl3 composite film (e) The diameter distribution of 2wt% BiCl3 composite film (f) Single fiber of 0wt% BiCl3 composite film (g) Single fiber of 2wt% BiCl3 com- posite film.

    图  4  XRD 结果与分析:(a)不同浓度的复合膜 XRD 结果(b) P(VDF-TrFE)的β相形成示意图

    Figure  4.  XRD results and analysis:(a) XRD results of composite films with different concentrations. (b) Plausible mechanism of interaction between P(VDF-TrFE) and BiCl3.

    图  5  传感器振动与测试平台示意图

    Figure  5.  Schematic diagram of sensor vibration and test platform.

    图  6  单次振动结果:(a)振动周期电压分析 (b)传感器运动轨迹分解示意图

    Figure  6.  Single vibration result:(a) Single vibration voltage result, (b). Schematic diagram of sensor motion track.

    图  7  传感器压电响应测试:不同浓度对开路电压(a)与短路电流(b)的影响;2 wt%BiCl3下不同频率对开路电压(c) 和短路电流(d)的影响

    Figure  7.  Sensor piezoelectric response test results: Effect of different concentrations on open-circuit voltage (a) and short-circuit current (b); Effect of Different Frequencies on Open Circuit Voltage (c) and Short Circuit Cur-rent (d) at 2 wt% BiCl3.

    图  8  按压力与电压的线性度实验:(a)传感器按压结构特写 (b)压电特性的线性拟合 (c)压电灵敏度的重现性验证

    Figure  8.  Experiment according to the linear relationship between pressure and voltage: (a) Close-up of pressing structure of sensor, (b) Linear fitting of piezoelectric characteristics, (c) Reproducibility verification of piezoelectric sensitivity

    图  9  力感知柔性键盘原型样机搭建: (a)柔性可穿戴力感知键盘示意图 (b) MSP430 F5529 Launchpad 及 6 通道电荷放 大电路(c)键盘工作示意图 (d)按压力度与时间特征

    Figure  9.  Prototype construction of force sensing flexible keyboard:(a) Schematic diagram of flexible wearable force sens- ing keyboard, (b). MSP430 F5529 launchpad and 6-channel charge amplification circuit, (c) Keyboard operation demon- stration, (d) Pressing force and time parameters.

    图  10  不同按键的输入风格可视化

    Figure  10.  Visualization of input styles of different keys.

  • [1] LIU F, HASHIM N A, LIU Y T, et al. , Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011,375(1-2):1-27. doi: 10.1016/j.memsci.2011.03.014
    [2] SONG Y S, YUN Y, LEE D Y, et al. , Effect of PVDF Concentration and Number of Fiber Lines on Piezoelectric Properties of Polymeric PVDF Biosensors[J]. FIBERS AND POLYMERS,2021,22(5):1200-1207. doi: 10.1007/s12221-021-0509-9
    [3] Lu L J, DING W Q, LIU J Q, et al. , Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy,2020,78:22.
    [4] WANKHADE S H, TIWARI S, GAUR A, et al. , PVDF-PZT nanohybrid based nanogenerator for energy harvesting applications[J]. Energy Rep. , 2020, 6 358-364.
    [5] WANG S W, ZHANG L, WANG L L, et al. , Fluorinated Barium Titanate Nanoparticles for Wearable Piezoelectric Power Generation[J]. ACS APPLIED NANO MATERIALS,2022,5(3):3352-3360. doi: 10.1021/acsanm.1c03777
    [6] SU Y P, SIM L N, COSTER H G L, et al. , Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane[J]. JOURNAL OF MEMBRANE SCIENCE,2021,640:119861. doi: 10.1016/j.memsci.2021.119861
    [7] ZHOU W Y, ZHANG F, YUAN M X, et al. , Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles[J]. J. Mater. Sci. -Mater. Electron.,2019,30(20):18350-18361. doi: 10.1007/s10854-019-02189-w
    [8] YANG T, PAN H, TIAN G, et al. , Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy,2020,72:9.
    [9] Li J Y, ZHANG L, DUCHARME S, Electric energy density of dielectric nanocomposites[J]. Appl[J]. Phys. Lett.,2007,90(13):3.
    [10] ZHANG X, ZHAO S, WANG F, et al. , Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles[J]. Applied Surface Science,2017,403:71-79. doi: 10.1016/j.apsusc.2017.01.121
    [11] MOKHTARI F, LATIFI M, SHAMSHIRSAZ M, et al. , Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: determining piezoelectric constant[J]. J. Text. Inst,2017,108(11):1917-1925. doi: 10.1080/00405000.2017.1300219
    [12] WANG A D, LIU J H, SHAO C K, et al. , Electro-Assisted 3 D Printing Multi-Layer PVDF/CaCl2 Composite Films and Sensors[J]. COATINGS,2022,12(6):820. doi: 10.3390/coatings12060820
    [13] ELASHMAWI I S, Effect of LiCl filler on the structure and morphology of PVDF films[J]. Materials Chemistry and Physics, 2008, 107(1): 96-100.
    [14] WANG Y J, WANG F F, XU L J, Effect of BiCl3 on the Morphology and Property of PVDF Films[J]. Advanced Materials Research, 2013, 804: 74-78.
    [15] FONTANANOVA E, JANSEN J C, CRISTIANO A, et al. , Effect of additives in the casting solution on the formation of PVDF membranes[J]. Desalination,2006,192(1-3):190-197. doi: 10.1016/j.desal.2005.09.021
    [16] MISHRA S, SAHOO R, UNNIKRISHNAN L, et al. , Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites[J]. MATERIALS RESEARCH BULLETIN,2020,124:110732. doi: 10.1016/j.materresbull.2019.110732
    [17] WEN R Y, GAO Z H, LUO L, et al. , Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance[J]. NANOCOMPOSITES,2022,8(1):64-73. doi: 10.1080/20550324.2022.2057661
    [18] NOORINEZHAD E, MERATI A A, MOAZENI N, Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide[J]. JOURNAL OF POLYMER RESEARCH, 2021, 28(12): 456.
    [19] KHALIFA M, PERAVALI S, VARSHA S, et al. , Piezoelectric Energy Harvesting Using Flexible Self-Poled Electroactive Nanofabrics Based on PVDF/ZnO-Decorated SWCNT Nanocomposites[J]. Jom,2022,74(8):3162-3171. doi: 10.1007/s11837-022-05342-9
    [20] ROBB B, LENNOX B. Electrospinning for Tissue Regeneration [M]. Manchester: 2011: 51-66.
    [21] JOAQUIM A, PAUL O, IBEZIM M, et al. , Electrospray Deposition of Polyvinylidene Fluoride (PVDF) Microparticles: Impact of Solvents and Flow Rate[J]. POLYMERS,2022,14(13):2702. doi: 10.3390/polym14132702
    [22] HE Z C, RAULT F, LEWANDOWSKI M, et al. , Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the beta Phase and Crystallinity Enhancement[J]. POLYMERS,2021,13(2):174. doi: 10.3390/polym13020174
    [23] YU B, MAO M Y, YU H, et al. , Enhanced Piezoelectric Performance of Electrospun Polyvinylidene Fluoride Doped with Inorganic Salts[J]. Macromolecular Materials and Engineering,2017,302(11):8.
    [24] MARTINS P, LOPES A C, LANCEROS-MENDEZ S, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science, 2014, 39(4): 683-706.
    [25] SHAHZAD A, CHEN Z F, HAIDARY A A, et al. , Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications[J]. J. Mater. Sci. -Mater. Electron.,2020,31(21):18627-18639. doi: 10.1007/s10854-020-04405-4
    [26] TANG D P, HUANG L T, ZENG R J, Point-of-Care Immunoassay Based on a Multipixel Dual-Channel Pressure Sensor Array with Visual Sensing Capability of Full-Color Switching and Reliable Electrical Signals[J]. ANALYTICAL CHEMISTRY, 2022, 94(38): 13278–13286.
    [27] ZENG R J, LUO Z B, ZHANG L J, et al. , Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework[J]. ANALYTICAL CHEMISTRY,2018,90(20):12299-12306. doi: 10.1021/acs.analchem.8b03889
    [28] YU Z Z, TANG Y, CAI G N, et al. , Paper Electrode-Based Flexible Pressure Sensor for Point-of-Care Immunoassay with Digital Multimeter[J]. ANALYTICAL CHEMISTRY,2019,91(2):1222-1226. doi: 10.1021/acs.analchem.8b04635
    [29] SEAMAN R L, CHEN J, Sensing platform for acoustic startle responses from rat forelimbs and hindlimbs[J]. IEEE transactions on bio-medical engineering, 1996, 43(2): 221-225.
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2022-12-19
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-02-02

目录

    /

    返回文章
    返回