留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用

骆懿 廖海 赵治栋 王金鹏 吴颖

骆懿, 廖海, 赵治栋, 等. 基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用[J]. 复合材料学报, 2023, 40(10): 5750-5759. doi: 10.13801/j.cnki.fhclxb.20230117.006
引用本文: 骆懿, 廖海, 赵治栋, 等. 基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用[J]. 复合材料学报, 2023, 40(10): 5750-5759. doi: 10.13801/j.cnki.fhclxb.20230117.006
LUO Yi, LIAO Hai, ZHAO Zhidong, et al. Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5750-5759. doi: 10.13801/j.cnki.fhclxb.20230117.006
Citation: LUO Yi, LIAO Hai, ZHAO Zhidong, et al. Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5750-5759. doi: 10.13801/j.cnki.fhclxb.20230117.006

基于BiCl3/P(VDF-TrFE)膜的柔性压力传感器设计及其在力感知键盘中的应用

doi: 10.13801/j.cnki.fhclxb.20230117.006
详细信息
    通讯作者:

    赵治栋,博士,教授,博士生导师,研究方向为生物医学信号处理和医学人工智能技术等 E-mail: zhaozd@hdu.edu.cn

  • 中图分类号: TP212.3;TB333

Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard

  • 摘要: 静电纺丝法制备有机压电传感器较传统压力传感器具有更好的柔韧性、轻质且透气,在可穿戴传感器研究领域中备受关注。本文提出了一种以静电纺丝工艺制备氯化铋/聚偏氟乙烯-三氟乙烯(BiCl3/P(VDF-TrFE))复合膜的方法,并以该复合膜为功能层,设计并制备了柔性压电传感器。一定含量BiCl3加入后,扫描电子显微镜分析结果表明纤维平均直径从619 nm增至1158 nm,且表面更趋光滑,XRD结果证实复合膜的β相含量得到了明显提高。压电响应测试结果显示,BiCl3含量为2wt%的P(VDF-TrFE)复合膜开路峰峰值电压和短路电流分别为16.8 V、164 nA,相比纯P(VDF-TrFE)压电薄膜有明显提升,是其2.15倍和2.24倍。压力感知实验显示,在1.28 N的按压力以下,具有较好的线性输出特性,并展现了良好的稳定性和重现性。利用该薄膜设计了柔性可穿戴力感知键盘,该键盘能采集用户的按压力度和持续时间,为柔性键盘等智能织物等相关应用提供了参考。

     

  • 图  1  柔性纳米压电薄膜及传感器制备:(a) 实验流程示意图;(b) 传感器结构示意图;(c) 封装后的传感器光学照片

    Figure  1.  Preparation of flexible nano piezoelectric films and sensors: (a) Schematic diagram of experiment flow; (b) Schematic diagram of sensor structure; (c) Photographs of the prepared sensor devise

    P(VDF-TrFE)—Poly(vinylidene fluoride-trifluoroethylene)

    图  2  静电纺丝系统示意图

    Figure  2.  Schematic diagram for the electrospinning system

    RH—Relative humidity

    图  3  不同浓度的 BiCl3/P(VDF-TrFE)复合膜的SEM图像:(a) 0wt%;(b) 2wt%;(c) 5wt%;(d) 0wt%BiCl3复合膜的纤维直径统计;(e) 2wt%BiCl3复合膜的纤维直径统计;(f) 0wt%BiCl3单根纤维;(g) 2wt%BiCl3单根纤维

    Figure  3.  SEM images of BiCl3/P(VDF-TrFE) composite membranes with different concentrations: (a) 0wt%; (b) 2wt%; (c) 5wt%; (d) Diameter distribution of 0wt%BiCl3 composite film; (e) Diameter distribution of 2wt%BiCl3 composite film; (f) Single fiber of 0wt%BiCl3; (g) Single fiber of 2wt%BiCl3

    图  4  (a) 不同浓度的复合膜 XRD图谱;(b) P(VDF-TrFE)与BiCl3相互作用机制

    Figure  4.  (a) XRD patterns of composite films with different concentrations; (b) Plausible mechanism of interaction between P(VDF-TrFE) and BiCl3

    图  5  传感器振动与测试平台示意图

    Figure  5.  Schematic diagram of sensor vibration and test platform

    TIA—Transresistance amplifier

    图  6  单次振动结果:(a) 振动周期电压分析;(b)传感器运动轨迹分解示意图

    Figure  6.  Single vibration result: (a) Single vibration voltage result; (b) Schematic diagram of sensor motion track

    图  7  传感器压电响应测试:不同浓度对开路电压(a)与短路电流(b)的影响;2wt%BiCl3下不同频率对开路电压(c) 和短路电流(d)的影响

    Figure  7.  Sensor piezoelectric response test results: Effect of different concentrations on open-circuit voltage (a) and short-circuit current (b); Effect of different frequencies on open circuit voltage (c) and short circuit current (d) at 2wt%BiCl3

    图  8  按压力与电压的线性度实验:(a) 传感器按压结构特写;(b) 压电特性的线性拟合;(c) 压电灵敏度的重现性验证

    Figure  8.  Experiment according to the linear relationship between pressure and voltage: (a) Close-up of pressing structure of sensor; (b) Linear fitting of piezoelectric characteristics; (c) Reproducibility verification of piezoelectric sensitivity

    图  9  力感知柔性键盘原型样机搭建:(a) 柔性可穿戴力感知键盘示意图;(b) MSP430 F5529 Launchpad 及6通道电荷放大电路;(c) 键盘工作示意图;(d) 按压力度与时间特征

    Figure  9.  Prototype construction of force sensing flexible keyboard: (a) Schematic diagram of flexible wearable force sensing keyboard; (b) MSP430 F5529 Launchpad and 6-channel charge amplification circuit; (c) Keyboard operation demonstration; (d) Pressing force and time parameters

    图  10  不同按键的输入风格可视化

    Figure  10.  Visualization of input styles of different keys

  • [1] HUANG L T, ZENG R J, XU J H, et al. Point-of-care immunoassay based on a multipixel dual-channel pressure sensor array with visual sensing capability of full-color switching and reliable electrical signals[J]. Analytical Chemistry,2022,94(38):13278-13286. doi: 10.1021/acs.analchem.2c03393
    [2] ZENG R J, LUO Z B, ZHANG L J, et al. Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework[J]. Analytical Chemistry,2018,90(20):12299-12306. doi: 10.1021/acs.analchem.8b03889
    [3] YU Z Z, TANG Y, CAI G N, et al. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter[J]. Analytical Chemistry,2019,91(2):1222-1226. doi: 10.1021/acs.analchem.8b04635
    [4] LIU F, HASHIM N A, LIU Y T, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011,375(1-2):1-27. doi: 10.1016/j.memsci.2011.03.014
    [5] SONG Y S, YUN Y, LEE D Y, et al. Effect of PVDF concentration and number of fiber lines on piezoelectric properties of polymeric PVDF biosensors[J]. Fibers and Polymers,2021,22(5):1200-1207. doi: 10.1007/s12221-021-0509-9
    [6] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy,2020,78:105251. doi: 10.1016/j.nanoen.2020.105251
    [7] WANKHADE S H, TIWARI S, GAUR A, et al. PVDF-PZT nanohybrid based nanogenerator for energy harvesting applications[J]. Energy Reports,2020,6:358-364. doi: 10.1016/j.egyr.2020.02.003
    [8] WANG S W, ZHANG L, WANG L L, et al. Fluorinated barium titanate nanoparticles for wearable piezoelectric power generation[J]. ACS Applied Nano Materials,2022,5(3):3352-3360. doi: 10.1021/acsanm.1c03777
    [9] SU Y P, SIM L N, COSTER H G L, et al. Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane[J]. Journal of Membrane Science,2021,640:119861. doi: 10.1016/j.memsci.2021.119861
    [10] ZHOU W Y, ZHANG F, YUAN M X, et al. Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles[J]. Journal of Materials Science: Materials in Electronics,2019,30:18350-18361. doi: 10.1007/s10854-019-02189-w
    [11] YANG T, PAN H, TIAN G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy,2020,72:104706. doi: 10.1016/j.nanoen.2020.104706
    [12] LI J Y, ZHANG L, DUCHARME S. Electric energy density of dielectric nanocomposites[J]. Applied Physics Letters,2007,90(13):132901. doi: 10.1063/1.2716847
    [13] ZHANG X, ZHAO S, WANG F, et al. Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@poly(methylmethacrylate) and BaTiO3@poly(trifluoroethyl methacrylate) nanoparticles[J]. Applied Surface Science,2017,403:71-79. doi: 10.1016/j.apsusc.2017.01.121
    [14] MOKHTARI F, LATIFI M, SHAMSHIRSAZ M, et al. Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: Determining piezoelectric constant[J]. The Journal of the Textile Institute,2017,108(11):1917-1925. doi: 10.1080/00405000.2017.1300219
    [15] WANG A D, LIU J H, SHAO C K, et al. Electro-assisted 3D printing multi-layer PVDF/CaCl2 composite films and sensors[J]. Coatings,2022,12(6):820. doi: 10.3390/coatings12060820
    [16] ELASHMAWI I S. Effect of LiCl filler on the structure and morphology of PVDF films[J]. Materials Chemistry and Physics,2008,107(1):96-100. doi: 10.1016/j.matchemphys.2007.06.045
    [17] WANG Y J, WANG F F, XU L J. Effect of BiCl3 on the morphology and property of PVDF films[J]. Advanced Materials Research,2013,804:74-78. doi: 10.4028/www.scientific.net/AMR.804.74
    [18] FONTANANOVA E, JANSEN J C, CRISTIANO A, et al. Effect of additives in the casting solution on the formation of PVDF membranes[J]. Desalination,2006,192(1-3):190-197. doi: 10.1016/j.desal.2005.09.021
    [19] MISHRA S, SAHOO R, UNNIKRISHNAN L, et al. Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites[J]. Materials Research Bulletin,2020,124:110732. doi: 10.1016/j.materresbull.2019.110732
    [20] WEN R Y, GAO Z H, LUO L, et al. Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance[J]. Nanocomposites,2022,8(1):64-73. doi: 10.1080/20550324.2022.2057661
    [21] NOORINEZHAD E, MERATI A A, MOAZENI N. Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide[J]. Journal of Polymer Research,2021,28(12):456. doi: 10.1007/s10965-021-02641-8
    [22] KHALIFA M, PERAVALI S, VARSHA S, et al. Piezoelectric energy harvesting using flexible self-poled electroactive nanofabrics based on PVDF/ZnO-decorated SWCNT nanocomposites[J]. JOM,2022,74(8):3162-3171. doi: 10.1007/s11837-022-05342-9
    [23] ROBB B, LENNOX B. Electrospinning for tissue regeneration[M]. Manchester: Woodhead Publishing Series in Biomaterials, 2011: 51-66.
    [24] JOAQUIM A, PAUL O, IBEZIM M, et al. Electrospray deposition of polyvinylidene fluoride (PVDF) microparticles: Impact of solvents and flow rate[J]. Polymers,2022,14(13):2702. doi: 10.3390/polym14132702
    [25] HE Z C, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement[J]. Polymers,2021,13(2):174. doi: 10.3390/polym13020174
    [26] YU B, MAO M Y, YU H, et al. Enhanced piezoelectric performance of electrospun polyvinylidene fluoride doped with inorganic salts[J]. Macromolecular Materials and Engineering,2017,302(11):1700214. doi: 10.1002/mame.201700214
    [27] MARTINS P, LOPES A C, LANCEROS-MENDEZ S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science,2014,39(4):683-706.
    [28] SHAHZAD A, CHEN Z F, HAIDARY A A, et al. Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications[J]. Journal of Materials Science: Materials in Electronics,2020,31(21):18627-18639. doi: 10.1007/s10854-020-04405-4
    [29] SEAMAN R L, CHEN J. Sensing platform for acoustic startle responses from rat forelimbs and hindlimbs[J]. IEEE Transactions on Biomedical Engineering,1996,43(2):221-225.
  • 加载中
图(10)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  293
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2022-12-19
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回