Design of flexible nano pressure sensor based on BiCl3/P(VDF-TrFE) composite film and application in force sensing flexible keyboard
-
摘要:
在各种制作压力传感器的有机材料中,聚偏氟乙烯(PVDF)具有良好的生物相容性和压电灵敏度。但相比于无机压电材料,PVDF及其共聚物压电系数较低,限制了其作为压力传感器和能量收集器的性能。为了更低成本的制备出压电性更好且柔软度高的复合膜,本文通过静电纺丝法,制备了基于BiCl3/P(VDF-TrFE)复合膜的柔性纳米压电薄膜传感器。一定含量BiCl3加入后,扫描电子显微镜分析结果呈现纤维平均直径从619nm增至1158nm,且表面更趋光滑,X射线衍射图证实复合膜的β相含量得到了明显提高。压电响应测试结果显示,BiCl3含量为2wt%的P(VDF-TrFE)复合膜开路峰峰值电压和短路电流分别为16.8V、164nA,相比纯P(VDF-TrFE)压电薄膜有明显提升,分别提升了115%、180%。压力感知实验显示,压电薄膜在1.28N的按压力以下,具有较好的线性输出特性。作者利用该复合膜设计了一款柔性可穿戴力感知键盘,该键盘有采集按压力度和持续时间的功能,为柔性键盘等智能织物相关应用提供了参考。 P(VDF-TrFE)的特性及应用(a)和BiCl3改性后的开路电压(b) -
关键词:
- P(VDF-TrFE) /
- 高压静电纺丝 /
- BiCl3 /
- 力感知键盘 /
- 柔性传感器
Abstract: The organic piezoelectric sensor prepared by electrospinning is better flexibility, light weight and breathability than the traditional pressure sensor, which has attracted much attention in the field of wearable sensor research. In this paper, a method of preparing BiCl3/P(VDF-TrFE) composite film by electrospinning was proposed, and the flexible piezoelectric sensor was designed and prepared with the composite film as the functional layer. After a certain amount of BiCl3 was added, the scanning electron microscope analysis showed that the average diameter of the fiber increased from 619 nm to 1158 nm, and the surface became smoother. The X-ray diffraction pattern confirmed the stability of the composite film β phase content has been significantly improved. The piezoelectric response testing results show that the peak to peak Voc and Isc of P(VDF-TrFE) composite films with 2wt% BiCl3 are 16.8 V and 164 nA, Compared with pure P (VDF TrFE) piezoelectric film, it is obviously improved, 215% and 224% times. The pressure sensing testing results show that the piezoelectric film is good linear output characteristics under the pressure of 1.28 N. A flexible wearable force sensing keyboard was designed with this film, which can collect fingers pressing force and duration time. And it provides a reference solution on smart fabrics such as flexible keyboard applications.-
Key words:
- P(VDF-TrFE) /
- Electrospinning /
- BiCl3 /
- Force sensing keyboard /
- Flexible sensor
-
图 3 不同浓度的 BiCl3/P(VDF-TrFE)复合膜 SEM 电镜结果:(a) 0wt% ;(b)2wt% ;(c) 5wt%;(d)0wt% BiCl3 复合 膜的纤维直径统计;(e) 2wt% BiCl3 复合膜的纤维直径统计;(f) 0wt%单根纤维;(g) 2wt% BiCl3 单根纤维.
Figure 3. SEM results of BiCl3/P(VDF-TrFE) composite membranes with different concentrations:(a) 0wt%;(b) 2wt% (c) 5wt% (d) The diameter distribution of 0wt% BiCl3 composite film (e) The diameter distribution of 2wt% BiCl3 composite film (f) Single fiber of 0wt% BiCl3 composite film (g) Single fiber of 2wt% BiCl3 com- posite film.
图 7 传感器压电响应测试:不同浓度对开路电压(a)与短路电流(b)的影响;2 wt%BiCl3下不同频率对开路电压(c) 和短路电流(d)的影响
Figure 7. Sensor piezoelectric response test results: Effect of different concentrations on open-circuit voltage (a) and short-circuit current (b); Effect of Different Frequencies on Open Circuit Voltage (c) and Short Circuit Cur-rent (d) at 2 wt% BiCl3.
图 8 按压力与电压的线性度实验:(a)传感器按压结构特写 (b)压电特性的线性拟合 (c)压电灵敏度的重现性验证
Figure 8. Experiment according to the linear relationship between pressure and voltage: (a) Close-up of pressing structure of sensor, (b) Linear fitting of piezoelectric characteristics, (c) Reproducibility verification of piezoelectric sensitivity
图 9 力感知柔性键盘原型样机搭建: (a)柔性可穿戴力感知键盘示意图 (b) MSP430 F5529 Launchpad 及 6 通道电荷放 大电路(c)键盘工作示意图 (d)按压力度与时间特征
Figure 9. Prototype construction of force sensing flexible keyboard:(a) Schematic diagram of flexible wearable force sens- ing keyboard, (b). MSP430 F5529 launchpad and 6-channel charge amplification circuit, (c) Keyboard operation demon- stration, (d) Pressing force and time parameters.
-
[1] LIU F, HASHIM N A, LIU Y T, et al. , Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science,2011,375(1-2):1-27. doi: 10.1016/j.memsci.2011.03.014 [2] SONG Y S, YUN Y, LEE D Y, et al. , Effect of PVDF Concentration and Number of Fiber Lines on Piezoelectric Properties of Polymeric PVDF Biosensors[J]. FIBERS AND POLYMERS,2021,22(5):1200-1207. doi: 10.1007/s12221-021-0509-9 [3] Lu L J, DING W Q, LIU J Q, et al. , Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy,2020,78:22. [4] WANKHADE S H, TIWARI S, GAUR A, et al. , PVDF-PZT nanohybrid based nanogenerator for energy harvesting applications[J]. Energy Rep. , 2020, 6 358-364. [5] WANG S W, ZHANG L, WANG L L, et al. , Fluorinated Barium Titanate Nanoparticles for Wearable Piezoelectric Power Generation[J]. ACS APPLIED NANO MATERIALS,2022,5(3):3352-3360. doi: 10.1021/acsanm.1c03777 [6] SU Y P, SIM L N, COSTER H G L, et al. , Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane[J]. JOURNAL OF MEMBRANE SCIENCE,2021,640:119861. doi: 10.1016/j.memsci.2021.119861 [7] ZHOU W Y, ZHANG F, YUAN M X, et al. , Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles[J]. J. Mater. Sci. -Mater. Electron.,2019,30(20):18350-18361. doi: 10.1007/s10854-019-02189-w [8] YANG T, PAN H, TIAN G, et al. , Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy,2020,72:9. [9] Li J Y, ZHANG L, DUCHARME S, Electric energy density of dielectric nanocomposites[J]. Appl[J]. Phys. Lett.,2007,90(13):3. [10] ZHANG X, ZHAO S, WANG F, et al. , Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles[J]. Applied Surface Science,2017,403:71-79. doi: 10.1016/j.apsusc.2017.01.121 [11] MOKHTARI F, LATIFI M, SHAMSHIRSAZ M, et al. , Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: determining piezoelectric constant[J]. J. Text. Inst,2017,108(11):1917-1925. doi: 10.1080/00405000.2017.1300219 [12] WANG A D, LIU J H, SHAO C K, et al. , Electro-Assisted 3 D Printing Multi-Layer PVDF/CaCl2 Composite Films and Sensors[J]. COATINGS,2022,12(6):820. doi: 10.3390/coatings12060820 [13] ELASHMAWI I S, Effect of LiCl filler on the structure and morphology of PVDF films[J]. Materials Chemistry and Physics, 2008, 107(1): 96-100. [14] WANG Y J, WANG F F, XU L J, Effect of BiCl3 on the Morphology and Property of PVDF Films[J]. Advanced Materials Research, 2013, 804: 74-78. [15] FONTANANOVA E, JANSEN J C, CRISTIANO A, et al. , Effect of additives in the casting solution on the formation of PVDF membranes[J]. Desalination,2006,192(1-3):190-197. doi: 10.1016/j.desal.2005.09.021 [16] MISHRA S, SAHOO R, UNNIKRISHNAN L, et al. , Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites[J]. MATERIALS RESEARCH BULLETIN,2020,124:110732. doi: 10.1016/j.materresbull.2019.110732 [17] WEN R Y, GAO Z H, LUO L, et al. , Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance[J]. NANOCOMPOSITES,2022,8(1):64-73. doi: 10.1080/20550324.2022.2057661 [18] NOORINEZHAD E, MERATI A A, MOAZENI N, Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide[J]. JOURNAL OF POLYMER RESEARCH, 2021, 28(12): 456. [19] KHALIFA M, PERAVALI S, VARSHA S, et al. , Piezoelectric Energy Harvesting Using Flexible Self-Poled Electroactive Nanofabrics Based on PVDF/ZnO-Decorated SWCNT Nanocomposites[J]. Jom,2022,74(8):3162-3171. doi: 10.1007/s11837-022-05342-9 [20] ROBB B, LENNOX B. Electrospinning for Tissue Regeneration [M]. Manchester: 2011: 51-66. [21] JOAQUIM A, PAUL O, IBEZIM M, et al. , Electrospray Deposition of Polyvinylidene Fluoride (PVDF) Microparticles: Impact of Solvents and Flow Rate[J]. POLYMERS,2022,14(13):2702. doi: 10.3390/polym14132702 [22] HE Z C, RAULT F, LEWANDOWSKI M, et al. , Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the beta Phase and Crystallinity Enhancement[J]. POLYMERS,2021,13(2):174. doi: 10.3390/polym13020174 [23] YU B, MAO M Y, YU H, et al. , Enhanced Piezoelectric Performance of Electrospun Polyvinylidene Fluoride Doped with Inorganic Salts[J]. Macromolecular Materials and Engineering,2017,302(11):8. [24] MARTINS P, LOPES A C, LANCEROS-MENDEZ S, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science, 2014, 39(4): 683-706. [25] SHAHZAD A, CHEN Z F, HAIDARY A A, et al. , Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications[J]. J. Mater. Sci. -Mater. Electron.,2020,31(21):18627-18639. doi: 10.1007/s10854-020-04405-4 [26] TANG D P, HUANG L T, ZENG R J, Point-of-Care Immunoassay Based on a Multipixel Dual-Channel Pressure Sensor Array with Visual Sensing Capability of Full-Color Switching and Reliable Electrical Signals[J]. ANALYTICAL CHEMISTRY, 2022, 94(38): 13278–13286. [27] ZENG R J, LUO Z B, ZHANG L J, et al. , Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework[J]. ANALYTICAL CHEMISTRY,2018,90(20):12299-12306. doi: 10.1021/acs.analchem.8b03889 [28] YU Z Z, TANG Y, CAI G N, et al. , Paper Electrode-Based Flexible Pressure Sensor for Point-of-Care Immunoassay with Digital Multimeter[J]. ANALYTICAL CHEMISTRY,2019,91(2):1222-1226. doi: 10.1021/acs.analchem.8b04635 [29] SEAMAN R L, CHEN J, Sensing platform for acoustic startle responses from rat forelimbs and hindlimbs[J]. IEEE transactions on bio-medical engineering, 1996, 43(2): 221-225. -

计量
- 文章访问数: 118
- HTML全文浏览量: 89
- 被引次数: 0