留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基底表面缺陷对TiO2/Bi2WO6复合材料微观结构和光催化性能的影响

刘袁 房国丽 严祥辉 沈宏芳

刘袁, 房国丽, 严祥辉, 等. 基底表面缺陷对TiO2/Bi2WO6复合材料微观结构和光催化性能的影响[J]. 复合材料学报, 2023, 40(5): 2783-2793. doi: 10.13801/j.cnki.fhclxb.20220628.001
引用本文: 刘袁, 房国丽, 严祥辉, 等. 基底表面缺陷对TiO2/Bi2WO6复合材料微观结构和光催化性能的影响[J]. 复合材料学报, 2023, 40(5): 2783-2793. doi: 10.13801/j.cnki.fhclxb.20220628.001
LIU Yuan, FANG Guoli, YAN Xianghui, et al. Effect of substrate surface defect on the microstructure and photocatalytic activities of TiO2/Bi2WO6 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2783-2793. doi: 10.13801/j.cnki.fhclxb.20220628.001
Citation: LIU Yuan, FANG Guoli, YAN Xianghui, et al. Effect of substrate surface defect on the microstructure and photocatalytic activities of TiO2/Bi2WO6 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2783-2793. doi: 10.13801/j.cnki.fhclxb.20220628.001

基底表面缺陷对TiO2/Bi2WO6复合材料微观结构和光催化性能的影响

doi: 10.13801/j.cnki.fhclxb.20220628.001
基金项目: 宁夏回族自治区重点研发计划重大(重点)项目(2019 BFG02018);西夏区科技计划项目;北方民族大学高层次人才计划项目;北方民族大学研究生创新项目(YCX21110)
详细信息
    通讯作者:

    房国丽,工学博士,教授,硕士生导师,研究方向为纳米复合材料、半导体功能复合材料结构设计与优化  E-mail: fangguoli999@163.com

  • 中图分类号: TB332;TQ426.64

Effect of substrate surface defect on the microstructure and photocatalytic activities of TiO2/Bi2WO6 composites

Funds: Ningxia Key R&D Program (2019 BFG2018); Science & Technology Project of Xixia District; High-Level Talents Program of North Minzu University; Program of Graduate Innovation Research in North Minzu University (YCX21110)
  • 摘要: TiO2/Bi2WO6异质结复合材料是可见光响应光催化活性最高的物质之一,其界面结构和微观形貌是影响光催化性能的重要因素。但是,如何可控“裁剪”TiO2/Bi2WO6异质结复合材料的界面结构与微观形貌仍面临巨大的挑战。本文采用缺陷诱导可控合成TiO2/Bi2WO6异质结复合材料,研究了TiO2基底表面缺陷尺寸、分布密度等对TiO2/Bi2WO6复合材料微观结构和光催化性能的影响。结果表明:热腐蚀合成温度、腐蚀时间是影响TiO2纳米带基底表面缺陷尺寸和分布的关键因素。TiO2纳米带基底表面的缺陷尺寸为26 nm,缺陷分布密度为12个/μm2,有利于合成界面结合良好的TiO2/Bi2WO6异质结复合材料。所得TiO2/Bi2WO6异质结复合材料在可见光辐照12 min后使罗丹明B(RhB)完全降解,辐照20 min后使亚甲基蓝(MB)完全降解,辐照70 min后对苯酚的降解率达43.8%。

     

  • 图  1  缺陷诱导合成TiO2/Bi2WO6异质结的形成示意图

    Figure  1.  Schematic illustration for the formation of TiO2/Bi2WO6 heterojunction synthesized by defect inducing hetero-growth method

    图  2  热腐蚀时间不同时合成不同TiO2纳米带基底样品的SEM图像

    Figure  2.  SEM images of the different TiO2 nanobelt substrates synthesized with different corrosion time

    图  3  不同TiO2/Bi2WO6复合材料的XRD图谱

    Figure  3.  XRD patterns of different TiO2/Bi2WO6 composites

    图  4  ((a), (b)) TiO2/Bi2WO6-2 h的SEM和TEM图像;TiO2/Bi2WO6-4 h (c)、TiO2/Bi2WO6-6 h (d)的SEM图像;((e), (f)) TiO2/Bi2WO6-10 h的SEM和TEM图像;(g) TiO2/Bi2WO6-12 h的SEM图像;(h) TiO2/Bi2WO6-14 h的SEM和TEM图像

    Figure  4.  ((a), (b)) SEM and TEM images of TiO2/Bi2WO6-2 h; SEM images of TiO2/Bi2WO6-4 h (c) and TiO2/Bi2WO6-6 h (d); ((e), (f)) SEM and TEM images of TiO2/Bi2WO6-10 h; (g) SEM image of TiO2/Bi2WO6-12 h; (h) SEM and TEM images of TiO2/Bi2WO6-14 h

    图  5  可见光下不同TiO2/Bi2WO6复合材料对罗丹明B(RhB)的光催化活性:(a) RhB浓度随辐照时间的演化图谱;(b) RhB光降解速率的一阶动力学拟合曲线

    C0—Initial concentration of RhB solution; C—Instantaneous concentration of RhB solution for different irradiation times;

    Figure  5.  Photocatalytic activities of the different TiO2/Bi2WO6 composites for the degradation of rhodamine B (RhB) under visible light irradiation: (a) Evolution of RhB concentration over irradiation time; (b) Corresponding first-order kinetic linear fitting curves for photo-degradation of RhB

    (1–C/C0)×100%—Photo-degradation percentage of RhB

    图  6  不同TiO2/Bi2WO6复合材料中Bi (a)、W (b)、Ti (c)和O (d) 元素的高分辨XPS图谱

    Figure  6.  High resolution XPS spectra of Bi (a), W (b), Ti (c) and O (d) for different TiO2/Bi2WO6 composites

    图  7  不同腐蚀温度处理的TiO2纳米带基底样品的SEM图像

    Figure  7.  SEM images of TiO2 nanobelt substrates prepared at different corroding temperature

    图  8  不同腐蚀温度时TiO2/Bi2WO6复合材料的XRD图谱

    Figure  8.  XRD patterns of the different TiO2/Bi2WO6 composites prepared at different corroding temperature

    图  9  TiO2/Bi2WO6-60℃ (a)、TiO2/Bi2WO6-100℃ (b)和TiO2/Bi2WO6-140℃ (c) 复合材料的TEM图像

    Figure  9.  TEM images of TiO2/Bi2WO6-60℃ (a), TiO2/Bi2WO6-100℃ (b) and TiO2/Bi2WO6-140℃ (c) composites

    图  10  TiO2/Bi2WO6-60℃、TiO2/Bi2WO6-100℃及TiO2/Bi2WO6-140℃复合材料中Bi (a) 和W (b) 的高分辨XPS图谱

    Figure  10.  High resolution XPS spectra of Bi (a) and W (b) elements for TiO2/Bi2WO6-60℃, TiO2/Bi2WO6-100℃ and TiO2/Bi2WO6-140℃ composites

    图  11  可见光下不同TiO2/Bi2WO6复合材料对RhB的光催化降解率

    Figure  11.  Degradation rates of RhB using different TiO2/Bi2WO6 composites as photocatalyst under visible light

    图  12  TiO2/Bi2WO6-100℃异质结在可见光下对RhB、亚甲基蓝(MB)、盐酸四环素(TC-HCl)和苯酚的光催化降解率

    Figure  12.  Degradation rates of RhB, methylene blue (MB), tetracycline hydrochloride (TC-HCl) and phenol with TiO2/Bi2WO6-100℃ heterojunction as photocatalyst under visible light

    表  1  不同热腐蚀合成温度和时间TiO2纳米带基底的比表面积

    Table  1.   Specific surface area of the TiO2 nanobelts substrates synthesized for different corroding time and temperature

    SampleTcor/℃Time/hSpecial surface area/(m2·g−1)Resulted composites
    TiO2-013.95TiO2/Bi2WO6-0
    TiO2-2 h100214.68TiO2/Bi2WO6-2 h
    TiO2-4 h100415.78TiO2/Bi2WO6-4 h
    TiO2-6 h100618.71TiO2/Bi2WO6-6 h
    TiO2-8 h100821.64TiO2/Bi2WO6-8 h
    TiO2-10 h1001022.18TiO2/Bi2WO6-10 h
    TiO2-12 h1001224.40TiO2/Bi2WO6-12 h
    TiO2-14 h1001436.41TiO2/Bi2WO6-14 h
    TiO2-60℃601024.08TiO2/Bi2WO6-60℃
    TiO2-80℃801021.23TiO2/Bi2WO6-80℃
    TiO2-100℃1001021.92TiO2/Bi2WO6-100℃
    TiO2-120℃1201022.96TiO2/Bi2WO6-120℃
    TiO2-140℃1401030.51TiO2/Bi2WO6-140℃
    Notes: Tcor and time—Corroding temperature and maintaining time during the synthesis of TiO2 nanobelts substrates; Sample TiO2-10 h and TiO2-100℃—Prepared using the same procedure, except the concentration of H2SO4 solution has a small error between them.
    下载: 导出CSV
  • [1] YAN Q S, XU M M, LIN C P, et al. Efficient photocatalytic degradation of tetracycline hydrochloride by Ag3PO4 under visible-light irradiation[J]. Environmental Science and Pollution Research,2016,23(14):14422-14430. doi: 10.1007/s11356-016-6588-2
    [2] MIRANDA-GARCIA N, SUAREZ S, MALDONADO M I, et al. Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water[J]. Catalysis Today,2014,230:27-34. doi: 10.1016/j.cattod.2013.12.048
    [3] ZHANG X, YANG P, YANG B, et al. Synthesis of novel Bi/Bi4O5Br2 via a UV light irradiation for decomposing the oil field pollutants[J]. Inorganic Chemistry Communications,2020,122:108297. doi: 10.1016/j.inoche.2020.108297
    [4] BAO J J, DAI Y, LIU H, et al. Photocatalytic removal of SO2 over Mn doped titanium dioxide supported by multi-walled carbon nanotubes[J]. International Journal of Hydrogen Energy,2016,41(35):15688-15695. doi: 10.1016/j.ijhydene.2016.03.174
    [5] ZHANG Y, XIONG M Y, SUN A R, et al. MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants[J]. Journal of Cleaner Production,2021,290:125782. doi: 10.1016/j.jclepro.2021.125782.
    [6] LOU W B, ZHANG Y, ZHENG S L, et al. Efficient recovery of scrapped V2O5-WO3/TiO2 SCR catalyst by cleaner hydrometalurgical process[J]. Hydrometallurgy,2019,187:45-53. doi: 10.1016/j.hydromet.2019.05.003
    [7] KAVINKUMAR V, VERMA A, UMA K, et al. Plasmonic metallic silver induced Bi2WO6/TiO2 ternary junction towards the photocatalytic, electrochemical OER/HER, antibacterial and sensing applications[J]. Applied Surface Science,2021,569:150918. doi: 10.1016/j.apsusc.2021.150918
    [8] LOW J X, YU J G, MIETEK J, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29:1601694. doi: 10.1002/adma.201601694
    [9] TONG H, OUYANG S, BI Y, et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials,2012,24:229-251. doi: 10.1002/adma.201102752
    [10] NICOSIA D, CZEKAJ I, KROCHER O. Chemical deactivation of V2O5-WO3/TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B: Environmental,2008,77(15):228-236.
    [11] LI K, CHAI B, PENG T, et al. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light[J]. ACS Catalysis,2013,3(2):170-177. doi: 10.1021/cs300724r
    [12] LIU S Z, ZHANG Y C. Synthesis of CPVC-modified SnS2/TiO2 composite with improved visible light-driven photocatalysis[J]. Materials Research Bulletin,2021,135:111125. doi: 10.1016/j.materresbull.2020.111125
    [13] ZHANG J, HUANG L H, YANG L X, et al. Controllable synthesis of Bi2WO6(001)/TiO2(001) heterostructure with enhanced photocatalytic activity[J]. Journal of Alloys and Compound,2016,676:37-45. doi: 10.1016/j.jallcom.2016.03.090
    [14] SHANG M, WANG W Z, ZHANG L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: Controllable synthesis and enhanced visible photocatalytic degradation performances[J]. The Journal of Physical and Chemisity C,2009,113:14727-14731. doi: 10.1021/jp9045808
    [15] LOPEZ S M, HIDALGO M C, NAVIO J A, et al. Novel Bi2WO6/TiO2 heterostructures for rhodamine B degradation under sunlike irradiation[J]. Journal of Hazardous Materials,2011,185(2-3):1425-1434. doi: 10.1016/j.jhazmat.2010.10.065
    [16] YANG C, HUANG Y, LI F, et al. One-step synthesis of Bi2WO6/TiO2 heterojunctions with enhanced photocatalytic and superhydrophobic property via hydrothermal method[J]. Journal of Materials Science,2016,51:1032-1042. doi: 10.1007/s10853-015-9433-y
    [17] LI H X, LIANG L, NIU X, et al. Construction of a Bi2WO6/TiO2 heterojunction and its photocatalytic degradation performance[J]. New Journal of Chemistry, 2022, 46: 8185-8194.
    [18] FANG G L, LIU J, WU J D, et al. A generic strategy for preparation of TiO2/BixMyOz (M=W, Mo) heterojunctions with enhanced photocatalytic activities[J]. Applied Surface Science,2019,475:785-792. doi: 10.1016/j.apsusc.2018.12.297
    [19] HINOJOSA-REYES M, CAMPOSECO-SOLIS R, RUIZ F, et al. Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants[J]. Materials Science in Semiconductor Processing,2019,100:130-139. doi: 10.1016/j.mssp.2019.04.050
    [20] SHIVANI V, HARISH S, ARCHANA J M, et al. Highly efficient 3D hierarchical Bi2WO6 catalyst for environmental remediation[J]. Applied Surface Science,2019,488:696-706. doi: 10.1016/j.apsusc.2019.05.072
    [21] ZHANG L, NIE Y, HU C, et al. Enhanced fenton degradation of rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite[J]. Applied Catalysis B: Environmental,2012,12:418-424.
    [22] 李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6直接Z-scheme异质结的制备、表征及光催化还原U(VI) 的性能[J]. 复合材料学报, 2021, 38(8):2646-2654.

    LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica,2021,38(8):2646-2654(in Chinese).
    [23] XU Y, LIN D, LIU X, et al. Electrospun BiOCl/Bi2Ti2O7 nanorod heterostructures with enhanced solar light efficiency in the photocatalytic degradation of tetracycline hydrochloride[J]. ChemCatChem,2018,10:2496-2504. doi: 10.1002/cctc.201800100
    [24] HOU Y F, LIU S J, ZHANG J, et al. Facile hydrothermal synthesis of TiO2/Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties[J]. Dalton Transactions,2014,43(3):1025-1031. doi: 10.1039/C3DT52046C
    [25] ZHU Y, SHAH M W, WANG C, et al. Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2-x heterojunction[J]. Applied Catalysis B: Environmental,2017,203:526-532. doi: 10.1016/j.apcatb.2016.10.056
    [26] LI W, DING X, WU H, et al. In-situ hydrothermal synthesis of TiO2/Bi2WO6 heterojunction with enhanced photocatalytic activity[J]. Materials Letters,2018,227:272-275. doi: 10.1016/j.matlet.2018.05.107
    [27] YANG Z, WANG J, CHEN L, et al. In situ fabrication of TiO2/Bi3.64Mo0.36O6.55 nanocomposite with high visible-light-driven photocatalytic efficiency[J]. Nano,2017,12:1750059. doi: 10.1142/S179329201750059X
    [28] BAI J, REN X, CHEN X, et al. Oxygen vacancy-enhanced ultrathin Bi2O3-Bi2WO6 nanosheets' photocatalytic performances under visible light irradiation[J]. Langmuir,2021,37(16):5049-5058. doi: 10.1021/acs.langmuir.1c00576
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  634
  • HTML全文浏览量:  408
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-06-05
  • 录用日期:  2022-06-18
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回