留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟化共价有机框架/聚酰亚胺混合基质膜的制备及其气体分离性能

魏博文 吴珊珊 石宇飞 王川昊 刘婵娟 黄孝华

魏博文, 吴珊珊, 石宇飞, 等. 氟化共价有机框架/聚酰亚胺混合基质膜的制备及其气体分离性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 魏博文, 吴珊珊, 石宇飞, 等. 氟化共价有机框架/聚酰亚胺混合基质膜的制备及其气体分离性能[J]. 复合材料学报, 2024, 42(0): 1-12.
WEI Bowen, WU Shanshan, SHI Yufei, et al. Preparation and gas separation properties of fluorinated covalent organic frameworks/polyimide mixed matrix membranes[J]. Acta Materiae Compositae Sinica.
Citation: WEI Bowen, WU Shanshan, SHI Yufei, et al. Preparation and gas separation properties of fluorinated covalent organic frameworks/polyimide mixed matrix membranes[J]. Acta Materiae Compositae Sinica.

氟化共价有机框架/聚酰亚胺混合基质膜的制备及其气体分离性能

基金项目: 国家自然科学基金(51963007),广西自然科学基金(2020GXNSFAA159006,2021GXNSFAA075016),桂林市科学研究与技术开发计划(2020010906)
详细信息
    通讯作者:

    黄孝华,博士,教授,研究方向为聚合物基复合材料 E-mail:huangxiaohua@glut.edu.cn

  • 中图分类号: TB332

Preparation and gas separation properties of fluorinated covalent organic frameworks/polyimide mixed matrix membranes

Funds: National Natural Science Foundation of China (51963007), Guangxi Natural Science Foundation (2020GXNSFAA159006, 2021GXNSFAA075016), Guilin Municipal Scientific Research and Technology Development Program (2020010906)
  • 摘要: 混合基质膜结合聚合物膜的柔韧性和多孔填料的气体分离性能,近年来在气体分离领域被广泛关注。共价有机框架材料(COFs)具有高比表面积、高孔隙率、易功能化等特点,其全有机的结构展现出与聚合物之间良好的相容性,被认为是混合基质膜理想填料之一。因此,本研究通过溶剂热法合成了氟化共价有机框架材料TpPa-CF3,采用共混法以TpPa-CF3为填料,聚酰亚胺6FDA-ODA为基体制备TpPa-CF3/6FDA-ODA混合基质膜。通过傅里叶红外光谱(FT-IR)、X-射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM)和气体渗透性等测试对TpPa-CF3及其混合基质膜进行结构与性能的研究。结果表明,TpPa-CF3均一的孔道为气体分子传输提供了快速通道,框架的微孔结构增强了气体分子与孔壁上功能基团的相互作用。当TpPa-CF3负载量为5 wt%时,CO2和O2渗透性相较于6FDA-ODA基体膜分别提高了149%和138%,CO2/N2和O2/N2分离因子分别提升到24.4和4.8。

     

  • 图  1  TpPa-CF3的(a)PXRD精修谱图(b)FT-IR谱图(c)13C固体核磁谱图

    Figure  1.  (a) PXRD refined spectra (b) FT-IR spectra (c) 13C solid-state NMR spectrum of TpPa-CF3

    图  2  TpPa-CF3的XPS(a)全谱;(b)C 1 s;(c)N 1 s;(d)F 1 s

    Figure  2.  XPS spectra of TpPa-CF3 (a) Survey spectrum; (b) C 1 s; (c) N 1 s; (d) F 1 s

    图  3  TpPa-CF3的(a)微观形貌(b)N2吸附-脱附曲线(c)孔径分布图(d)TGA和DTG曲线

    Figure  3.  (a) Microscopic morphology (b) N2 adsorption-desorption curves (c) Pore size distribution (d) TGA and DTG curves of TpPa-CF3

    图  4  6 FDA-ODA及TpPa-CF3/6 FDA-ODA混合基质膜的(a)XRD曲线(b)FT-IR图谱

    Figure  4.  (a) XRD curves (b) FT-IR patterns of 6 FDA-ODA and TpPa-CF3/6 FDA-ODA mixed matrix membranes

    图  5  6 FDA-ODA和TpPa-CF3/6 FDA-ODA混合基质膜的(a)TGA曲线(b)DSC曲线

    Figure  5.  (a) TGA curves (b) DSC curves of 6 FDA-ODA and TpPa-CF3/6 FDA-ODA mixed matrix membranes

    图  6  膜表面和截面的SEM图像(a1-e1)膜表面;(a2-e2)膜截面(a-e分别代表不同TpPa-CF3的负载量:0,1,3,5,7 wt%)

    Figure  6.  SEM images of membrane surface and cross-section (a1-e1) membrane surface; (a2-e2) membrane cross-section (a-e represent different TpPa-CF3 loadings: 0, 1, 3, 5, 7 wt%, respectively)

    图  7  不同负载量下TpPa-CF3/6 FDA-ODA混合基质膜的(a)接触角(b)应力-应变曲线

    Figure  7.  (a) Contact angle (b) Stress-strain curves of TpPa-CF3/6 FDA-ODA mixed matrix membranes at different loadings

    图  8  不同负载量下TpPa-CF3/6 FDA-ODA混合基质膜的(a)气体渗透性(b)气体选择性(c)72 h 连续渗透性测试

    Figure  8.  (a) Gas permeability (b) Gas selectivity (c) 72 h continuous permeability performance test of TpPa-CF3/6 FDA-ODA mixed matrix membranes at different loadings

    图  9  不同负载量的TpPa-CF3/6 FDA-ODA混合基质膜(a)CO2/N2(b)O2/N2的Robeson上限图

    Figure  9.  Robeson upper bound plots of TpPa-CF3/6 FDA-ODA mixed matrix membranes with different loadings (a) CO2/N2 (b) O2/N2

    表  1  不同负载量下TpPa-CF3/6 FDA-ODA混合基质膜的力学性能

    Table  1.   Mechanical properties of TpPa-CF3/6 FDA-ODA mixed matrix membranes at different loadings

    TpPa-CF3 Loadings/wt%Tensile Strength/MPaElongation at Break/%Young’s Modulus/GPaθw/(°)
    074.110.11.5979.9
    179.69.71.6381.4
    382.98.61.7083.1
    593.07.81.8284.1
    784.57.31.7689.1
    下载: 导出CSV

    表  2  6 FDA-ODA及TpPa-CF3/6 FDA-ODA混合基质膜的气体渗透系数和理想选择性

    Table  2.   Gas permeability coefficients and ideal selectivity of 6 FDA-ODA and TpPa-CF3/6 FDA-ODA mixed matrix membranes

    MembranesPermeability/BarrerIdeal Selectivity α
    CO2O2N2α(CO2/N2)α(O2/N2)
    6 FDA-ODA12.472.550.6419.54.0
    1%TpPa-CF3/6 FDA-ODA16.913.760.9817.23.8
    3%TpPa-CF3/6 FDA-ODA22.774.431.0322.04.3
    5%TpPa-CF3/6 FDA-ODA31.086.081.2724.54.8
    7%TpPa-CF3/6 FDA-ODA18.624.161.1116.83.8
    Note: 1 Barrer = 10−10 cm3(STP)·cm·cm−2s−1·cmHg−1; Ideal Selectivity α = P(A)/P(B), A and B are two different pure gases.
    下载: 导出CSV

    表  3  文献中报道的混合基质膜气体分离性能与本工作的对比

    Table  3.   Comparison of gas separation performance of mixed matrix membranes reported in the literature with the present work

    Membranes typeP(CO2)P(O2)$ \alpha $(CO2/N2)$ \alpha $(O2/N2)References
    TpPa-1-nc/Pebax21 Barrer-72-[26]
    COFp-PVAm270 Barrer-86-[27]
    TpBD@PBI-BuI14.8 Barrer-23-[28]
    ZIF-7-I/(BPDA/6 FDA-ODA)-2.9 Barrer-0.19[29]
    PBI-PI-based Carbon293.5 Barrer93.1 Barrer8.32.6[30]
    5%TpPa-CF3/6 FDA-ODA31.08 Barrer6.08 Barrer24.44.8This work
    Note: Pebax—Poly(ether-block-amide); PVAm—Polyvinylamine; PBI-BuI—Tert-butylpolybenzimidazole;
    ZIF-7-I—Wide-Pore ZIF-7; PBI—Polybenzimidazoles; PI—Polyimide.
    下载: 导出CSV
  • [1] GUO X, QIAO Z, LIU D, et al. Mixed-matrix membranes for CO2 separation: Role of the third component[J]. Journal of Materials Chemistry A, 2019, 7(43): 24738-24759. doi: 10.1039/C9TA09012F
    [2] FAN H, PENG M, STRAUSS I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38. doi: 10.1038/s41467-020-20298-7
    [3] ZHANG B, LI J, ZHANG L, et al. Tuning free volume for enhanced gas separation by introducing fluorinated aryl ether diamine moiety in Tröger's-based membranes[J]. International Journal of Hydrogen Energy, 2024, 62: 749-759. doi: 10.1016/j.ijhydene.2024.03.002
    [4] 李金岭, 赖石清, 刘婵娟, 等. ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能[J]. 复合材料学报, 2023, 40(2): 950-958.

    LI Jinling, LAI Shiqing, LIU Chanjuan, et al. Preparation of ZIF-67@PDA/fluorine-containing polyimide mixed matrix membrane and gas separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 950-958(in Chinese).
    [5] ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. doi: 10.1016/0376-7388(91)80060-J
    [6] ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1): 390-400.
    [7] CHEN K, NI L, GUO X, et al. Introducing pyrazole-based MOF to polymer of intrinsic microporosity for mixed matrix membranes with enhanced CO2/CH4 separation performance[J]. Journal of Membrane Science, 2023, 688: 122110. doi: 10.1016/j.memsci.2023.122110
    [8] HABIB N, DURAK Ö, UZUN A, et al. Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity[J]. Separation Purification Technology, 2023, 312: 123346. doi: 10.1016/j.seppur.2023.123346
    [9] ZHANG Y, JIA H, WANG Q, et al. Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation[J]. Membranes, 2021, 12(1): 34. doi: 10.3390/membranes12010034
    [10] JIA Y, LIU P, LIU Y, et al. In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification[J]. Fuel, 2023, 339: 126938. doi: 10.1016/j.fuel.2022.126938
    [11] JHENG L-C, PARK J, YOON H W, et al. Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous structures for gas separations[J]. Separation Purification Technology, 2023, 310: 123126. doi: 10.1016/j.seppur.2023.123126
    [12] ZHANG C, ZHAO Y, LI J, et al. Construction of microporous covalent organic frameworks for high gas uptake capacities[J]. New Journal of Chemistry, 2023, 47(46): 21485-21489. doi: 10.1039/D3NJ04595A
    [13] RIAZ A, LIU L, XU Z, et al. Nanocomposite membranes comprising covalent organic framework and polymer of intrinsic microporosity for efficient CO2 separation[J]. Separation Purification Technology, 2024, 343: 127175. doi: 10.1016/j.seppur.2024.127175
    [14] ZHANG Y, MA L, LV Y, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001. doi: 10.1016/j.cej.2021.133001
    [15] DING S-Y, WANG W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. doi: 10.1039/C2CS35072F
    [16] SHAN M, SEOANE B, ROZHKO E, et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation[J]. Chemistry-A European Journal, 2016, 22(41): 14467-14470. doi: 10.1002/chem.201602999
    [17] ALAHAKOON S B, MCCANDLESS G T, KARUNATHILAKE A A K, et al. Enhanced structural organization in covalent organic frameworks through fluorination[J]. Chemistry-A European Journal, 2017, 23(18): 4255-4259. doi: 10.1002/chem.201700412
    [18] GAO C, LI J, YIN S, et al. Isostructural three-dimensional covalent organic frameworks[J]. Angewandte Chemie International Edition, 2019, 58(29): 9770-9775. doi: 10.1002/anie.201905591
    [19] YANG Z, WANG S, ZHANG Z, et al. Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors[J]. Journal of Materials Chemistry A, 2019, 7(29): 17277-17282. doi: 10.1039/C9TA02573A
    [20] KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. doi: 10.1021/ja308278w
    [21] KANG Z, PENG Y, QIAN Y, et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation[J]. Chemistry of Materials, 2016, 28(5): 1277-1285. doi: 10.1021/acs.chemmater.5b02902
    [22] 刘继阳. 聚酰亚胺和共价有机骨架混合基质膜的制备及其对CO2/CH4气体渗透和选择性能的研究 [D]. 太原: 太原理工大学, 2018.

    LIU Jiyang. Fabrication of polyimide and covalent organic framework mixed matrix membranes for research of CO2/CH4 gas permeability and selectivity [D]. Taiyuan: Taiyuan University of Technology, 2018. (in Chinese)
    [23] CHENG Y, YING Y, ZHAI L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. Journal of Membrane Science, 2019, 573: 97-106. doi: 10.1016/j.memsci.2018.11.060
    [24] 于广莉. 微孔有机框架材料的可控制备及气体分离性能的研究 [D]. 长春: 东北师范大学, 2021.

    YU Guangli. Controlled synthesis of microporous organic frameworks and their applications in gas separations [D]. Changchun: Northeast Normal University, 2021. (in Chinese)
    [25] CHEN H, YANG Z, DO-THANH C-L, et al. What fluorine can do in CO2 chemistry: Applications from homogeneous to heterogeneous systems[J]. ChemSusChem, 2020, 13(23): 6182-6200. doi: 10.1002/cssc.202001638
    [26] ZOU C, LI Q, HUA Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29093-29100.
    [27] CAO X, XU H, DONG S, et al. Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix[J]. Journal of Membrane Science, 2020, 601: 117882. doi: 10.1016/j.memsci.2020.117882
    [28] BISWAL B P, CHAUDHARI H D, BANERJEE R, et al. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation[J]. Chemistry-A European Journal, 2016, 22(14): 4695-4699. doi: 10.1002/chem.201504836
    [29] XIANG L, LIU D, JIN H, et al. Locking of phase transition in MOF ZIF-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation[J]. Materials Horizons, 2020, 7(1): 223-228. doi: 10.1039/C9MH00409B
    [30] HOSSEINI S S, OMIDKHAH M R, ZARRINGHALAM MOGHADDAM A, et al. Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process[J]. Separation and Purification Technology, 2014, 122: 278-289. doi: 10.1016/j.seppur.2013.11.021
  • 加载中
计量
  • 文章访问数:  65
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 修回日期:  2024-07-04
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回