Preparation and gas separation properties of fluorinated covalent organic frameworks/polyimide mixed matrix membranes
-
摘要: 混合基质膜结合聚合物膜的柔韧性和多孔填料的气体分离性能,近年来在气体分离领域被广泛关注。共价有机框架材料(COFs)具有高比表面积、高孔隙率、易功能化等特点,其全有机的结构展现出与聚合物之间良好的相容性,被认为是混合基质膜理想填料之一。因此,本研究通过溶剂热法合成了氟化共价有机框架材料TpPa-CF3,采用共混法以TpPa-CF3为填料,聚酰亚胺6FDA-ODA为基体制备TpPa-CF3/6FDA-ODA混合基质膜。通过傅里叶红外光谱(FT-IR)、X-射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM)和气体渗透性等测试对TpPa-CF3及其混合基质膜进行结构与性能的研究。结果表明,TpPa-CF3均一的孔道为气体分子传输提供了快速通道,框架的微孔结构增强了气体分子与孔壁上功能基团的相互作用。当TpPa-CF3负载量为5 wt%时,CO2和O2渗透性相较于6FDA-ODA基体膜分别提高了149%和138%,CO2/N2和O2/N2分离因子分别提升到24.4和4.8。Abstract: Mixed matrix membranes, which combine the flexibility of polymer membranes with the gas separation properties of porous fillers, have attracted much attention in the field of gas separation in recent years. Covalent organic framework materials (COFs) are distinguished by a high specific surface area, high porosity, and facile functionalization. Their all-organic structure exhibits favorable compatibility with polymers, which is regarded as an optimal filler for mixed matrix membranes. Accordingly, in this study, the fluorinated covalent organic framework material TpPa-CF3 was synthesized via a solvothermal method, and TpPa-CF3/6FDA-ODA mixed matrix membranes were prepared through a blending method utilizing TpPa-CF3 as a filler and polyimide 6FDA-ODA as a matrix. The structure and properties of TpPa-CF3 and its mixed matrix membranes were investigated through a series of analytical techniques, including FT-IR, XRD, TGA, SEM, and gas permeability tests. The results showed that the homogeneous pores of TpPa-CF3 provided fast channels for gas molecule transport, the microporous structure of the framework enhanced the interaction of gas molecules with functional groups on the pore walls, and the dipole-quadrupole interactions of C—F bonds with CO2 elevated the interactions of the framework with CO2. At a loading of 5 wt% of TpPa-CF3, the CO₂ and O₂ permeability exhibited an improvement of 149% and 138%, respectively, in comparison to the 6FDA-ODA matrix membrane. Additionally, the CO₂/N₂ and O₂/N₂ separation factors were elevated to 24.4 and 4.8, respectively.
-
表 1 不同负载量下TpPa-CF3/6 FDA-ODA混合基质膜的力学性能
Table 1. Mechanical properties of TpPa-CF3/6 FDA-ODA mixed matrix membranes at different loadings
TpPa-CF3 Loadings/wt% Tensile Strength/MPa Elongation at Break/% Young’s Modulus/GPa θw/(°) 0 74.1 10.1 1.59 79.9 1 79.6 9.7 1.63 81.4 3 82.9 8.6 1.70 83.1 5 93.0 7.8 1.82 84.1 7 84.5 7.3 1.76 89.1 表 2 6 FDA-ODA及TpPa-CF3/6 FDA-ODA混合基质膜的气体渗透系数和理想选择性
Table 2. Gas permeability coefficients and ideal selectivity of 6 FDA-ODA and TpPa-CF3/6 FDA-ODA mixed matrix membranes
Membranes Permeability/Barrer Ideal Selectivity α CO2 O2 N2 α(CO2/N2) α(O2/N2) 6 FDA-ODA 12.47 2.55 0.64 19.5 4.0 1%TpPa-CF3/6 FDA-ODA 16.91 3.76 0.98 17.2 3.8 3%TpPa-CF3/6 FDA-ODA 22.77 4.43 1.03 22.0 4.3 5%TpPa-CF3/6 FDA-ODA 31.08 6.08 1.27 24.5 4.8 7%TpPa-CF3/6 FDA-ODA 18.62 4.16 1.11 16.8 3.8 Note: 1 Barrer = 10−10 cm3(STP)·cm·cm−2s−1·cmHg−1; Ideal Selectivity α = P(A)/P(B), A and B are two different pure gases. 表 3 文献中报道的混合基质膜气体分离性能与本工作的对比
Table 3. Comparison of gas separation performance of mixed matrix membranes reported in the literature with the present work
Membranes type P(CO2) P(O2) $ \alpha $(CO2/N2) $ \alpha $(O2/N2) References TpPa-1-nc/Pebax 21 Barrer - 72 - [26] COFp-PVAm 270 Barrer - 86 - [27] TpBD@PBI-BuI 14.8 Barrer - 23 - [28] ZIF-7-I/(BPDA/6 FDA-ODA) - 2.9 Barrer - 0.19 [29] PBI-PI-based Carbon 293.5 Barrer 93.1 Barrer 8.3 2.6 [30] 5%TpPa-CF3/6 FDA-ODA 31.08 Barrer 6.08 Barrer 24.4 4.8 This work Note: Pebax—Poly(ether-block-amide); PVAm—Polyvinylamine; PBI-BuI—Tert-butylpolybenzimidazole;
ZIF-7-I—Wide-Pore ZIF-7; PBI—Polybenzimidazoles; PI—Polyimide. -
[1] GUO X, QIAO Z, LIU D, et al. Mixed-matrix membranes for CO2 separation: Role of the third component[J]. Journal of Materials Chemistry A, 2019, 7(43): 24738-24759. doi: 10.1039/C9TA09012F [2] FAN H, PENG M, STRAUSS I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38. doi: 10.1038/s41467-020-20298-7 [3] ZHANG B, LI J, ZHANG L, et al. Tuning free volume for enhanced gas separation by introducing fluorinated aryl ether diamine moiety in Tröger's-based membranes[J]. International Journal of Hydrogen Energy, 2024, 62: 749-759. doi: 10.1016/j.ijhydene.2024.03.002 [4] 李金岭, 赖石清, 刘婵娟, 等. ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能[J]. 复合材料学报, 2023, 40(2): 950-958.LI Jinling, LAI Shiqing, LIU Chanjuan, et al. Preparation of ZIF-67@PDA/fluorine-containing polyimide mixed matrix membrane and gas separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 950-958(in Chinese). [5] ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. doi: 10.1016/0376-7388(91)80060-J [6] ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1): 390-400. [7] CHEN K, NI L, GUO X, et al. Introducing pyrazole-based MOF to polymer of intrinsic microporosity for mixed matrix membranes with enhanced CO2/CH4 separation performance[J]. Journal of Membrane Science, 2023, 688: 122110. doi: 10.1016/j.memsci.2023.122110 [8] HABIB N, DURAK Ö, UZUN A, et al. Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity[J]. Separation Purification Technology, 2023, 312: 123346. doi: 10.1016/j.seppur.2023.123346 [9] ZHANG Y, JIA H, WANG Q, et al. Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation[J]. Membranes, 2021, 12(1): 34. doi: 10.3390/membranes12010034 [10] JIA Y, LIU P, LIU Y, et al. In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification[J]. Fuel, 2023, 339: 126938. doi: 10.1016/j.fuel.2022.126938 [11] JHENG L-C, PARK J, YOON H W, et al. Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous structures for gas separations[J]. Separation Purification Technology, 2023, 310: 123126. doi: 10.1016/j.seppur.2023.123126 [12] ZHANG C, ZHAO Y, LI J, et al. Construction of microporous covalent organic frameworks for high gas uptake capacities[J]. New Journal of Chemistry, 2023, 47(46): 21485-21489. doi: 10.1039/D3NJ04595A [13] RIAZ A, LIU L, XU Z, et al. Nanocomposite membranes comprising covalent organic framework and polymer of intrinsic microporosity for efficient CO2 separation[J]. Separation Purification Technology, 2024, 343: 127175. doi: 10.1016/j.seppur.2024.127175 [14] ZHANG Y, MA L, LV Y, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001. doi: 10.1016/j.cej.2021.133001 [15] DING S-Y, WANG W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. doi: 10.1039/C2CS35072F [16] SHAN M, SEOANE B, ROZHKO E, et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation[J]. Chemistry-A European Journal, 2016, 22(41): 14467-14470. doi: 10.1002/chem.201602999 [17] ALAHAKOON S B, MCCANDLESS G T, KARUNATHILAKE A A K, et al. Enhanced structural organization in covalent organic frameworks through fluorination[J]. Chemistry-A European Journal, 2017, 23(18): 4255-4259. doi: 10.1002/chem.201700412 [18] GAO C, LI J, YIN S, et al. Isostructural three-dimensional covalent organic frameworks[J]. Angewandte Chemie International Edition, 2019, 58(29): 9770-9775. doi: 10.1002/anie.201905591 [19] YANG Z, WANG S, ZHANG Z, et al. Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors[J]. Journal of Materials Chemistry A, 2019, 7(29): 17277-17282. doi: 10.1039/C9TA02573A [20] KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. doi: 10.1021/ja308278w [21] KANG Z, PENG Y, QIAN Y, et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation[J]. Chemistry of Materials, 2016, 28(5): 1277-1285. doi: 10.1021/acs.chemmater.5b02902 [22] 刘继阳. 聚酰亚胺和共价有机骨架混合基质膜的制备及其对CO2/CH4气体渗透和选择性能的研究 [D]. 太原: 太原理工大学, 2018.LIU Jiyang. Fabrication of polyimide and covalent organic framework mixed matrix membranes for research of CO2/CH4 gas permeability and selectivity [D]. Taiyuan: Taiyuan University of Technology, 2018. (in Chinese) [23] CHENG Y, YING Y, ZHAI L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. Journal of Membrane Science, 2019, 573: 97-106. doi: 10.1016/j.memsci.2018.11.060 [24] 于广莉. 微孔有机框架材料的可控制备及气体分离性能的研究 [D]. 长春: 东北师范大学, 2021.YU Guangli. Controlled synthesis of microporous organic frameworks and their applications in gas separations [D]. Changchun: Northeast Normal University, 2021. (in Chinese) [25] CHEN H, YANG Z, DO-THANH C-L, et al. What fluorine can do in CO2 chemistry: Applications from homogeneous to heterogeneous systems[J]. ChemSusChem, 2020, 13(23): 6182-6200. doi: 10.1002/cssc.202001638 [26] ZOU C, LI Q, HUA Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29093-29100. [27] CAO X, XU H, DONG S, et al. Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix[J]. Journal of Membrane Science, 2020, 601: 117882. doi: 10.1016/j.memsci.2020.117882 [28] BISWAL B P, CHAUDHARI H D, BANERJEE R, et al. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation[J]. Chemistry-A European Journal, 2016, 22(14): 4695-4699. doi: 10.1002/chem.201504836 [29] XIANG L, LIU D, JIN H, et al. Locking of phase transition in MOF ZIF-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation[J]. Materials Horizons, 2020, 7(1): 223-228. doi: 10.1039/C9MH00409B [30] HOSSEINI S S, OMIDKHAH M R, ZARRINGHALAM MOGHADDAM A, et al. Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process[J]. Separation and Purification Technology, 2014, 122: 278-289. doi: 10.1016/j.seppur.2013.11.021
计量
- 文章访问数: 65
- HTML全文浏览量: 41
- 被引次数: 0