Preparation and CH4/N2 separation performance of high permeability supported SBS membrane
-
摘要: SBS嵌段树脂具有软硬段互相结合的独特结构,可通过挤压实现对气体分子的分离。本研究以多孔α-Al2O3陶瓷管为载体,利用一系列x-SBS/四氢呋喃(THF)树脂溶液制备了相应的SMS-x分离膜。FT-IR、XRD、SEM等表征测试结果表明,SBS树脂与载体之间可较好结合,分离膜厚度均小于50 μm。气体测试表明,在0.05 - 0.3 MPa压力范围内,SMS-20分离膜CH4/N2气体选择性最优,在0.1 MPa时,α(CH4/N2) =3.81,CH4的摩尔通量为1.41×10−6 mol·m−2·s−1·Pa−1。在0.3 MPa,SMS-10的CH4摩尔通量最大,可达3.47×10−6 mol·m−2·s−1·Pa−1。此外,通过不同比例混合气体的测试验证了本文制备的分离膜同样可胜任相应的分离工作。本文制备的所有分离膜在0.1 MPa压差下可稳定分离气体长达7 d,具有良好的性能稳定性。因此,多孔α-Al2O3支撑型SBS分离膜可兼备优异的渗透通量及气体选择性,在煤层气CH4的富集方面提供有利选择。Abstract: SBS block resin has a unique structure in which soft and hard segments are combined with each other, and gas molecules can be separated by extrusion. In this study, a series of x-SBS/Tetrahydrofuran (THF) resin solutions were used to prepare the corresponding SMS-x separation membranes with porous α-Al2O3 ceramics tubes as the carrier. FT-IR, XRD, SEM and other characterization test results show that the SBS resin can be well combined with the carrier, and the thickness of the separation membrane is less than 50 μm. The gas test shows that the SMS-20 separation membrane has the best CH4/N2 gas selectivity in the pressure range of 0.05-0.3 MPa. At 0.1 MPa, α(CH4/N2) =3.81, and the molar flux of CH4 is 1.41×10−6 mol·m−2·s−1·Pa−1. At 0.3 MPa, the CH4 molar flux of SMS-10 is the largest, which can reach 3.47×10−6 mol·m−2·s−1·Pa−1. In addition, the test of different proportions of mixed gas verifies that the separation membrane prepared in this paper can also be competent for the corresponding separation work. All the separation membranes prepared in this paper can stably separate gas for up to 7 days at a pressure difference of 0.1 MPa, and have good performance stability. Therefore, the porous α-Al2O3 substrate SBS separation membrane can have both excellent permeation flux and gas selectivity, and provide a favorable choice for the enrichment of coalbed methane CH4.
-
Key words:
- Separation Membrane /
- Block Polymer /
- Supporting /
- Permeation Flux /
- CH4/N2 Selectivity
-
表 1 不同分离膜的溶解系数与渗透系数
Table 1. Dissolution coefficient and permeability coefficient of different separation membranes
Sample D(CH4)a D(N2)a S(CH4)b S(N2)b SMS-10 35.32 9.71 0.86 0.98 SMS-15 34.98 9.65 0.84 1.01 SMS-20 35.25 9.69 0.86 0.99 Notes: a:Diffusivity coefficient 108 (cm2 ·s−1); b:Solubility coefficient [cm3(STP)/cm3·atm] 表 2 本研究与相关文献报道性能对比
Table 2. Performance comparison between this study and related literature reports
Membrane material P(CH4) a P(N2) b α(CH4/N2) Operational condition c Ref. Pebax® 31 9.8 3.16 25℃,pure gas [4] 37 13 2.85 35℃,pure gas SBS/Pebax® 43.5 15.8 2.75 25℃,pure gas [4] 61.4 26.8 2.29 35℃,pure gas SBS 37 12.5 2.96 25℃,pure gas,1 atm [9] 50 16 3.13 35℃,pure gas,1 atm SBS/PDMS-co-PHMS 440 140 3.14 25℃,pure gas [19] 510 170 3.00 35℃,pure gas Matrimid® 310 180 1.72 25℃,pure gas [24] PI 0.0042 d0.0087 d0.48 25℃,pure gas [25] PIM-1 310 180 1.70 25℃,pure gas [26] SBS/α-Al2O3 14.1e 3.71e 3.81 25℃,pure gas,0.1 MPa This work 34.7e 11..21e 2.87 25℃,pure gas,0.3 MPa Notes: a ,b:1 Barrer = 10−10 cm3 (STP) ·cm·cm−2 ·s−1·cmHg−1 ; c:1 atm=0.1 MPa; d:GPU [10−6 m3 ·cm−2 ·s−1·cmHg−1]; e:Permeation flux [10−6 mol·m−2·s−1·Pa−1] SBS is the Poly (styrene-b-butadiene-b-styrene); Pebax® is the trade name of poly(ether-block-amide); PDMS-co-PHMS is the Trimethylsilyl terminated poly(dimethylsiloxane-co-methylhydrosiloxane); Matrimid® is the trade name of PI (polyimide); PIM-1 is a novel polymer of intrinsic microporosity. -
[1] 王悠然. 能源危机将给世界带来多重影响[N]. 中国社会科学报, 2023-02-13(008).WANG Youran. Energy crisis will bring multi ple impacts to the world [N]. Chinese Journal of Social Sciences, 2023-02-13 (008). (in Chinese) [2] 刘永宏, 冀浩楠. 精准执法除患安全关口前移[N]. 中国煤炭报, 2023-08-10(003).LIU Yonghong, JI Haonan. Accurate law en forcement to remove the safety threshold forward[N]. China Coal News, 2023-08-10 (003). (in Chinese) [3] 黄晓磊, 吴旭飞, 宋新巍. 膜分离技术在气体分离纯化中的应用[J]. 化学推进剂与高分子材料, 2018, 16(6): 23-28+40.HUANG Xiaolei, WU Xufei, SONG Xinwei. Application of membrane separation technology in gas separation and purification[J]. Chemical propellants and polymer materials, 2018, 16(6): 23-28+40(in Chinese). [4] GUA P, LUO J, LI W, et al. Enhancement of gas permeability for CH4/N2 separation membranes by blending SBS to Pebax polymers[J]. Macromolecular Research, 2017, 25(10): 1007-1014. doi: 10.1007/s13233-017-5130-9 [5] 陈雷, 李东泽, 刘刚, 等. 甲烷-氮气分离膜研究进展及展望[J]. 天然气工业, 2022, 42(5): 120-130. doi: 10.3787/j.issn.1000-0976.2022.05.013CHEN Lei, LI Dongze, LIU Gang, et al. Re search progress and prospect of methane-nitrogen separation membrane[J]. Natural gas industry, 2022, 42(5): 120-130(in Chinese). doi: 10.3787/j.issn.1000-0976.2022.05.013 [6] 李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定[J]. 无机盐工业, 2008, (2): 54-57. doi: 10.3969/j.issn.1006-4990.2008.02.019LI Bo, SHAO Lingling. XRD identification of alumina and aluminum hydroxide[J]. Inorganic salt industry, 2008, (2): 54-57(in Chinese). doi: 10.3969/j.issn.1006-4990.2008.02.019 [7] 张艳文, 郭猛, 任秀秀, 等. 硅橡胶复合膜的制备及气体分离性能研究[J]. 现代化工, 2023, 43(8): 139-144.ZHANG Yanwen, GUO Meng, REN Xiuxiu, et al. Preparation and gas separation performance of silicone rubber composite membranes[J]. Modern Chemical Engineering, 2023, 43(8): 139-144(in Chinese). [8] YU C, JIA Y, FANG K, et al. Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation[J]. Journal of Membrane Science, 2022, 663: 1-11. [9] WANG S, GUO Q, LIANG S, et al. Preparation of Ni-MOF-74/SBS mixed matrix membranes and its application of CH4/N2 separation[J]. Separation and Purification Technology, 2018, 199: 206-213. doi: 10.1016/j.seppur.2018.01.060 [10] 杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉: 武汉工业大学出版社, 2000.YANG Nanru, YUE Wenhai. Inorganic Non metallic Materials Atlas Manual[M]. Wuhan: Wuhan University of Technology Press, 2000. (in Chinese) [11] HUANG X, CHEN L, CHEN S, et al. Reconstruction of mixed matrix membranes by in situ vapor aminolysis for CO2/N2 and CH4/N2 separations[J]. Journal of Membrane Science, 2023, 685. [12] MA C, LI N, XUE W, et al. Polarization enhanced CH4/N2 separation in bromine functionalized ZIF-62 based mixed-matrix membranes[J]. Journal of Membrane Science, 2023, 683. [13] 金腾, 姚铮, 董亮亮, 等. Pebax/MIL-100(Cr)混合基质膜的制备及其在CH4/N2分离中的应用[J]. 化工新型材料, 2023, 51(4): 220-224.JIN Teng, YAO Zheng, DONG, LIangliang, et al. Preparation of Pebax/MIL-100(Cr) mixed matrix membrane and its application in CH4/N2 separation[J]. New chemical materials, 2023, 51(4): 220-224(in Chinese). [14] MA J, ZHANG J, YUAN Y, et al. HOF-21 nanofillers incorporated mixed matrix membranes for high-performance N2/CH4 separation[J]. Journal of Membrane Science, 2023, 677: 1-12. [15] WU T, TU Y, LIU W, et al. Isopropanol accelerated crystallization of AlPO-18 membranes for CO2/CH4 and N2/CH4 separations[J]. Separation and Purification Technology, 2023, 312: 55-61. [16] LI D, CHEN L, LIU G. Application of facilitated transfer mechanisms of SEBS/[P(14)666] [TMPP] composite membrane on CH4/N2 separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2). [17] YAN T, LIU D, YANG Q, et al. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. [18] YOUSEF S, TUCKUTE S, TONKONOGOVAS A, et al. Ultra-permeable CNTs/PES membranes with a very low CNTs content and high H2/N2 and CH4/N2 selectivity for clean energy extraction applications[J]. Journal of Materials Research and Technology, 2021, 15: 1-11. doi: 10.1016/j.jmrt.2021.07.118 [19] YANG X, ZHENG Y, WANG L, et al. Application of CH4/N2 separation based on poly(styrene-b-isoprene-b-styreneSIS)-poly(dimethylsiloxane-co-methylhydrosiloxane) (PDMS-co-PMHS) crosslinked membrane[J]. Reactive and Functional Polymers, 2019, 142: 36-43. doi: 10.1016/j.reactfunctpolym.2019.05.014 [20] J. D A L M , C. N L F, Griselda L D C, et al. PBI/Clinoptilolite mixed-matrix membranes for binary (N2/CH4) and ternary (CO2/N2/CH4) mixed gas separation[J]. Journal of Applied Polymer Science, 2020, 138(14): 1-13. [21] YU H, SHIN J, LEE A, et al. Tailoring selective pores of carbon molecular sieve membranes towards enhanced N2/CH4 separation efficiency[J]. Journal of Membrane Science, 2021, 12: 1-13. doi: 10.3390/membranes12010001 [22] 刘迪, 任吉中, 邓麦村. 聚醚共聚酰胺复合气体分离膜的制备与分离性能[J]. 膜科学与技术, 2010, 30(3): 44-49. doi: 10.3969/j.issn.1007-8924.2010.03.009LIU Di, REN Jizhong, DENG Maicun. Prepara tion and separation performance of polyether copolyamide composite gas separation membrane[J]. Membrane science and technology, 2010, 30(3): 44-49(in Chinese). doi: 10.3969/j.issn.1007-8924.2010.03.009 [23] 关盼盼, 李伟, 于富成, 等. 聚醚酰胺CH4/N2气体分离膜[J]. 兰州理工大学学报, 2017, 43(3): 30-33. doi: 10.3969/j.issn.1673-5196.2017.03.007GUAN Panpan, LI Wei, YU Fucheng, et al. Polyetheramide CH4/N2 gas separation membrane[J]. Journal of Lanzhou University of Technology, 2017, 43(3): 30-33(in Chinese). doi: 10.3969/j.issn.1673-5196.2017.03.007 [24] ZHANG Y, MUSSELMAN I, FERRARIS J. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS[J]. Journal of Membrane Science, 2008, 313(1-2): 170-181. doi: 10.1016/j.memsci.2008.01.005 [25] REN H, JIN J, HU J, et al. Affinity between Metal–Organic Frameworks and Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations[J]. Industrial & Engineering Chemistry Research, 2012, (30): 10156-10164. [26] BUDD P, MCKEOWN N, GHANEM B, et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1[J]. Journal of Membrane Science, 2008, 325(2): 851-860. doi: 10.1016/j.memsci.2008.09.010 [27] 衣华磊, 郭欣, 杨涛, 等. 超支化共聚聚酰亚胺膜制备及其CO2/CH4气体分离性能研究[J]. 膜科学与技术, 2023, 43(4): 54-59+68.YI Hualei, GUO Xin, YANG Tao, et al. Preparation of hyperbranched copolyimide membrane and its CO2/CH4 gas separation performance[J]. Membrane Science and Technology, 2023, 43(4): 54-59+68(in Chinese). [28] 丁晓莉, 唐永富, 崔浩然, 等. 含改性中空SAPO-34分子筛共聚膜的制备及其氮气/甲烷分离性能[J]. 天津工业大学学报, 2023, 42(4): 9-14. doi: 10.3969/j.issn.1671-024x.2023.04.002DING Xiaoli, TANG Yongfu, CUI Haoran, et al. Preparation and N2/CH4 separation performance of copolymer membranes containing modified hollow SAPO-34 molecular sieve[J]. Journal of Tianjin University of Technology, 2023, 42(4): 9-14(in Chinese). doi: 10.3969/j.issn.1671-024x.2023.04.002 [29] 任晓灵, 任吉中, 刘欣艳. Pebax气体分离膜制备及其用于沼气提纯的研究[J]. 膜科学与技术, 2020, 40(2): 82-88+111.REN Xiaoling, REN Jizhong, LIU Xinyan. Preparation of Pebax gas separation membrane and its application in biogas purification[J]. Membrane Science and Technology, 2020, 40(2): 82-88+111(in Chinese). [30] YANG X, ZHU T, XU Z, et al. Significantly enhanced CH4 permeability base on poly(styrene-b-butadiene-b-styrene)-poly(dimethylsiloxane-co-methylhydrosiloxane) crosslinked membranes[J]. Reactive and Functional Polymers, 2018, (124): 48-54. [31] 杨座国. 膜科学技术过程与原理[M] 上海: 华东理工大学出版社, 2009.8: 210-211.YANG Zuoguo. Process and Principle of Membrane Science and Technology[M] Shanghai: East China University of Science and Technology Press, 2009.8: 210-211. (in Chinese) [32] 王蕾, 王磊. 聚氯乙烯锂离子筛膜的制备及其在卤水中的锂吸附性能[J]. 复合材料学报, 2023, 40(9): 5107-5123.WANG Lei, WANG Lei. Preparation of polyvi nyl chloride lithium ion sieve membrane and its lithium adsorption performance in brine[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5107-5123(in Chinese). [33] 刘兰, 林晓艳, 梁力丽, 等. 偕胺肟化聚丙烯腈-β-环糊精纳米纤维膜的制备及其吸附性能[J]. 复合材料学报, 2022, 39(2): 726-735.LIU Lan, LIN Xiaoyan, LIANG Lili, et al. Prepa ration and adsorption properties of amidoxime polyacrylonitrile-β-cyclodextrin nanofiber membrane[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 726-735(in Chinese). [34] LUO J, ZHU T, SONG Y, et al. Improved permeability by incorporating polysiloxane in SBS block copolymers for CH4/N2 gas separation[J] Polymer. 2017(127): 52-65. [35] LOKHANDWALA K, PINNAU I, HE I, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, (346): 270-279. [36] BAKER R, LOKHANDWALA K. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, (47): 2109-2121.
计量
- 文章访问数: 71
- HTML全文浏览量: 30
- 被引次数: 0